建设单位:安徽玳妍生物科技有限公司

法人代表: 林学崧

编制单位:安徽国测检测技术有限公司

法人代表: 虞玉莲

建设单位: 安徽玳妍生物科技有限公司 编制单位: 安徽国测检测技术有限公司

电 话: 0551-65165099

传 真: / 传 真: 0551-65165099

邮 编: 230001

地 址: 安徽省郎溪经济开发区白茅 地 址: 合肥市庐阳区工投•兴庐产业

山路与钟梅路交叉口东北 园 3 栋 B 区 3 楼

目 录

表一	项目基本情况	1
表二	项目建设内容	3
表三	环境保护措施	. 11
表四	建设项目环境影响报告结论及审批部门审批决定	. 14
表五	验收监测质量控制及质量保证	.16
表六	验收监测内容	. 18
表七	验收监测结果与评价	. 20
表八	验收监测结论	. 22
建设项	过目竣工环境保护"三同时"验收登记表	.24
附件1	立项登记表	. 26
附件 2	环评批复	. 27
附件 3	委托书	. 30
附件4	企业生产情况说明	. 31
附件 5	厂房租赁协议	. 31
附件 6	验收检测报告	. 32
附图 1	建设项目地理位置图	.41
附图 2	厂区平面布置图	. 42
附图 3	现场照片	. 44

表一 项目基本情况

建设项目名称	年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目					
建设单位名称	安徽玳妍生物科技有限公司					
建设性质						
建设地点	安徽省郎溪经济	济开发区白茅山路与钟·	梅路交叉口	东北锦城	 科技园	
主要成品名称		各类化妆品	1 F			
设计生产能力		1500 万盒(荆	五)			
实际生产能力		700 万盒(剏	į)			
环评时间	2018年4月	开工建设时间	20	18年11	月	
调试时间	2019年5月	验收现场监测时间	2019年	11月17	7~18 日	
环评报告表 审批部门	原郎溪县 环境保护局	环评报告表 编制单位		环宇环保 展有限公		
投资总概算	1500 万元	环保投资总概算	25 万元	比例	1.67%	
实际总投资	800 万元	环保投资	20 万元	比例	2.5%	
	1、《中华人民共	共和国环境保护法》,20	015年1月1	日施行	•	
	2、《中华人民共和国环境影响评价法》,2018年12月29日修订;					
	3、《中华人民共	共和国水污染防治法》 ,	2018年1月	月1日施	行;	
	4、《中华人民共	共和国大气污染防治法 》	》,2018年1	10月26	日修订;	
	5、《中华人民共	和国环境噪声污染防治	a法》,2018年	手12月2	29 日修订;	
	6、《中华人民共	和国固体废物污染环境	竟保护法》,2	201年11	月7日修	
	订;					
	 7、《国务院关于	一修改〈建设项目环境(呆护管理条例	列〉的决	定》,国务	
	 院令第 682 号,20	017年10月1日施行;				
	 8、《关于发布。	〈建设项目竣工环境保持	产验收暂行。	か法〉的	公告》,国	
	8、《关于发布〈建设项目竣工环境保护验收暂行办法〉的公告》,国 环规评环【2017】4号,2017年11月20日;					
 验收监测依据						
业化皿视似地	9、《建反项目竣工环境保护验收技术指南 75架影响矣》,2018 年 5 月 16 日:					
		TT)亚兹雷山南加八尔川,毛	上示二法	・ 44 2名 を 8 1	\ (TT +)	
		环评管理中部分行业重	【 人受初有里	的地知》	外(环外	
	【2015】52 号),	2015年6月4日;				
	11、《安庆玳妍》	生物科技有限公司年产	1500 万盒	(瓶) 各	类护肤膏、	
	乳液、化妆水及各	类面膜产品项目环境影	影响报告表》	〉,东方玎	不宇环保科	

表一 项目基本情况 -1-

技发展有限公司,2018年4月;

- 12、《关于安庆玳妍生物科技有限公司年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目环境影响报告表审批意见的函》,郎环函【2018】313 号,郎溪县环境保护局,2018 年 11 月 7 日;
 - 13、建设项目竣工环境保护验收监测委托书;
 - 14、安庆玳妍生物科技有限公司提供的相关资料及文件。

1、项目有组织排放颗粒物执行《大气污染物综合排放标准》GB16297-1996 表 2 新污染源大气污染物二级排放标准,VOCs 排放参照天津市《工业企业挥发性有机物排放控制标准》DB12/524-2014 表 2 其他行业排放标准;无组织排放颗粒物执行《大气污染物综合排放标准》(GB16297-1996)表 2 无组织排放监控浓度限值,VOCs 排放参照天津市《工业企业挥发性有机物排放控制标准》DB12524-2014表 2 其他行业标准限值的要求。

验收监测评价

标准

标号

级别

限值

表 1 有组织废气标准限值一览表

污染物	低浓度颗粒物	VOCs	
排气筒高度 m	25		
最高允许排放浓度 mg/m³	20 80		
最高允许排放速率 kg/h	14.4	8.3	

表 2 建设项目无组织废气执行标准一览表

污染物	最高允许排放	无组织排法	放监控浓度限值	依据
行来物	浓度(mg/m³)	监控点	浓度(mg/m³)	1/13 1/14
颗粒物	120 mg/m ³	周界外浓 度最高点	1.0mg/m ³	GB16297—1996

2、项目废水执行《污水综合排放标准》(GB8978—1996)表4中的三级标准和郎溪县经济开发区东片污水处理厂接管标准。

表 3 建设项目废水执行标准一览表

污染物	标准限值(mg/L)	标准来源
COD	400	
BOD_5	200	
NH ₃ -N	30	郎溪县经济开发区东片
SS	200	污水处理厂接管标准
石油类	20	
LAS	20	

3、项目厂界噪声执行《工业企业厂界环境噪声排放标准》 (GB12348-2008)中3类标准限值。

表 4 建设项目厂界噪声执行标准一览表

标准限值 L	功能区类别	
昼间	夜间	り配区 尖加
65	55	3 类

4、项目一般工业固体废物贮存执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其 2013 年修改清单要求。

验收范围

项目相关主体工程、公用工程、辅助工程以及环保工程。

表一 项目基本情况 -3-

表二 项目建设内容

工程建设内容:

安庆玳妍生物科技有限公司位于宣城市郎溪经济开发区白茅山路与钟梅路交叉口东北,是一家专门从事于各类护肤产品和面膜产品生产及销售的企业。根据市场和公司发展需求,公司拟投资 1500 万元建设"年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目",项目租赁锦城科技园 1 栋已建成生产厂房。本项目于 2018 年 1 月 16 日由郎溪县发展和改革委员会进行备案,项目备案编码为: 2018-341821-26-03-00 0986;根据《中华人民共和国环境保护法》及《建设项目环境保护管理条列》等法规文件,企业委托东方环宇环保科技发展有限公司承担项目环境影响评价工作;郎溪县环境保护局于 2018 年 11 月 7 日以"郎环函【2018】313 号"文件对项目环评报告表进行审批。

该项目于 2018 年 11 月开工建设, 2019 年 5 月建成生产, 项目实际投资 800 万元, 建成后可实现年产 700 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品; 配套建设相关仓储设施、环保设施等。

项目主要建设内容详见表 4。

工程内容 单项工程 环评建设内容 实际建设情况 1 栋 5F, 建筑面积 15000m³, 其 中 1 层主要用于包装车间,2~5 层用 生产厂房 新建1间生产车间,位于租赁厂 于仓储用途。 房西边,用于安装乳化锅等生产设 新建1间,位于租赁厂房西边, 备; 1 栋 5F, 1F 用于包装车间, 2~5F 生产车间 占地面积 450 m², 主要用于安装乳 用于仓储用途; 生产车间和包装车 化锅等生产设备。 主体工程 间均为无尘车间, 设有中央空调系 项目生产车间和包装车间均为无 统。 尘车间,车间洁净度达到十万级, 无尘车间 设有中央空调系统,保证车间内稳 定约为18~25℃,湿度约为 45%~65%。 辅助工程 办公室 设置于厂房2层,建筑面积50 m²。 位于厂房2层。 供水 郎溪经济开发区供水管网供给。 郎溪经济开发区供水管网供给。 公用工程

表 4 项目主要建设内容一览表

表二 项目建设内容 -4-

	排水	雨污分流,雨水排入开发区雨水 网;生活污水经化粪池预处理,再 和设备清洗废水汇总由自建污水处 理站处理后,和纯水制备浓水、洗 瓶废水、间接冷区废水一同接管排 入郎溪县经济开发区东片污水处理 厂集中处理,尾水排入钟桥河。 郎溪经济开发区供电电网供电。	雨污分流,雨水排入开发区雨水 网;生活污水经化粪池预处理,再 和设备清洗废水汇总由自建污水处 理站处理后,和纯水制备浓水、洗 瓶废水、间接冷区废水一同接管排 入郎溪县经济开发区东片污水处理 厂集中处理,尾水排入钟桥河。 郎溪经济开发区供电电网供电。
	废水	生活污水先经化粪池预处理,再和设备清洗废水汇总由自建污水处理站处理后排入污谁管网。 纯水制备浓水:直接排入污水管网。 间接冷却废水:循环使用,每年排放1次,直接排入污水管网。 洗瓶废水:外购的包装瓶需纯水清洗烘干后才能使用,产生的洗瓶废水直接排入污水管网。	生活污水经化粪池预处理,再和设备清洗废水汇总由自建污水处理站处理后,和纯水制备浓水、洗瓶废水、间接冷区废水一同接管排入郎溪县经济开发区东片污水处理厂集中处理,尾水排入钟桥河。
环保工程	废气	称料粉尘:项目设有称料间用于每批次产品生产前的原料称量,由于每批次所用原料中粉料较少且需精确计量,称料过程产生的粉尘较少,作无组织排放。 生产车间废气:项目原料在加热搅拌乳化过程会有少量的有机废气产生,由于产生量较少且较为分散不易收集,项目有机废气拟经无尘生产车间中央空调系统收集,进入1套两级活性炭吸附装置处理,尾气由1根排气筒25m以上高空排放。	项目称料间称量过程中产生的称料粉尘较少,作无组织排放;项目原料在加热搅拌乳化过程会有少量的有机废气产生,由于产生量较少且较为分散不易收集,项目有机废气经无尘生产车间中央空调系统收集后,进入1套两级活性炭吸附装置处理,尾气由1根排气筒25m以上高空排放。
	噪声	设备减振、合理布局、墙体隔声、 隔音罩等。	设备减振、合理布局、墙体隔声、 隔音罩等。
	单位集中收集交由环卫部门置。 一般固废:不合格品、生产污水站污泥由建设单位收集 固废妥善处置,废包装材料单位收集后外售物资回收单 危险废物:废活性炭由建收集,安全暂存危废暂存间	生活垃圾、废含油抹布:由建设单位集中收集交由环卫部门清运处置。 一般固废:不合格品、生产滤渣、污水站污泥由建设单位收集作一般固废妥善处置,废包装材料由建设单位收集后外售物资回收单位。 危险废物:废活性炭由建设单位收集,安全暂存危废暂存间,定期委托有资质单位集中处置。	生活垃圾、废含油抹布由建设单位集中收集交由环卫部门清运处置。不合格品、生产滤渣、污水站污泥由建设单位收集作一般固废妥善处置,废包装材料由建设单位收集后外售物资回收单位。废活性炭由建设单位收集,安全暂存危废暂存间,后交由安徽人立环保科技有限公司处置。

表二 项目建设内容 -5-

主要生产设备:

项目主要生产设施详见表 5。

表 5 建设项目主要生产设备一览表

11. A A 14	环评		实际		
设备名称	设备型号	设备数量	设备型号	设备数量	
	KAHA-400 (10T)	1台			
	KAHA-400 (5T)	1台	KAHA-400 (2T)	1台	
	KAHA-400 (2T)	2 台			
均质乳化机	KAHA-400 (1T)	2 台	KAHA-400 (1T)	1台	
	KAHA-400 (500L)	2 台	KAHA-400 (500L)	1台	
	KAHA-400 (200L)	2 台	KAHA-400 (200L)	1台	
	KAHA-400 (100L)	2 台	KAHA-400 (200L)	I 🛱	
六孔面膜充填机	860N-01	6 套	860N-01	1 套	
单孔充填机	GZHA-25	6 套	GZHA-25	6 套	
软管机	DC-638	2 套	DC-638	1 套	
流水线设备	10m	20 套	10m	7套	
收缩机	BS-F	2 台	BS-F	1 套	
玻璃纸包装机	2001L 加大型	4 套	2001L 加大型	1 套	
花盒包装机	DX-20010	2 套	DX-20010	/	
空压机	P4MA	1台	P4MA	1台	
纯水设备	CM-230 (1t/h) (反渗透)	1 套	CM-230 (1t/h) (反渗透)	1 套	
喷码机	CCS-R	6台	CCS-R	2 台	
电烘干箱	/	3 台	/	1台	
循环冷却塔	循环量 50m³/h	1 套	循环量 50m³/h	1 套	
合计	/	66台(套)	/	27台(套)	

劳动定员及工作制:

本项目现有员工52人,年工作250天,一班制生产,每班工作8小时。

产品方案:

本项目建成后,可实现年产700万盒(瓶)各类化妆品的生产能力,产品情况详见表6。

表 6 建设项目产品方案一览表

序号	名称	包装规格	单位	产量	单位	折算重量
1	精华液	30g/瓶	万瓶/年	100	吨-年	30
2	面膜	22~100g/盒	万盒/年	400	吨-年	400

表二 项目建设内容 -6-

3	眼膜	8~35g/盒	万盒/年	60	吨-年	21
4	膏霜	50g/瓶	万瓶/年	40	吨-年	20
5	柔肤乳液	80g/瓶	万瓶/年	40	吨-年	32
6	洗面奶	100g/瓶	万瓶/年	10	吨-年	10
7	洗发水	400g/瓶	万瓶/年	10	吨-年	40
8	沐浴露	400g/瓶	万瓶/年	20	吨-年	80
9	护发素	350g/瓶	万瓶/年	15	吨-年	52.5
10	啫喱	80g/瓶	万瓶/年	5	吨-年	4
11			万盒(瓶)/年	700	吨-年	689.5

表二 项目建设内容 -7-

原辅材料及能源消耗:

项目原辅材料使用情况详见表 7。

表 7 建设项目原辅材料使用情况一览表

序号	名称	单位	环评消耗量	实际消耗量	备注
			原料		
1	纯水	吨/年	64.90	32	
2	丁二醇	吨/年	3.25	1.6	
3	甘油	吨/年	3.25	1.6	
4	芦芭油	吨/年	1.62	0.8	用于生产精华液
5	汉生胶	吨/年	0.16	0.08	
6	透明质酸钠	吨/年	0.16	0.08	
7	甘草酸二钾	吨/年	0.16	0.08	
8	纯水	吨/年	741.08	370	
9	丁二醇	吨/年	46.28	23	
10	甘油	吨/年	23.15	12	
11	汉生胶	吨/年	2.28	1.14	用于生产面膜
12	透明质酸钠	吨/年	0.90	0.45	
13	甘草酸二钾	吨/年	0.90	0.45	
14	香精	吨/年	0.41	0.2	
15	纯水	吨/年	38.02	19	
16	丁二醇	吨/年	3.80	1.9	
17	甘油	吨/年	3.80	1.9	用于生产眼膜
18	汉生胶	吨/年	0.38	0.19	
19	透明质酸钠	吨/年	0.20	0.1	
20	纯水	吨/年	35.34	18	
21	丁二醇	吨/年	3.53	1.8	
22	甘油	吨/年	3.53	1.8	
23	角鲨烷	吨/年	3.53	1.8	 用于生产膏霜
24	乳木果油	吨/年	2.37	1.2	
25	吐温 60	吨/年	0.59	0.3	
26	斯潘 60	吨/年	0.59	0.3	
27	香精	吨/年	0.02	0.01	
28	纯水	吨/年	54.83	28	
29	丁二醇	吨/年	4.57	2.29	
30	甘油	吨/年	4.57	2.29	
31	乳木果油	吨/年	0.91	0.45	 用于生产柔肤乳液
32	角鲨烷	吨/年	0.91	0.45	/ 14 4 <u>1</u> 1 / / / / / / / / / / / / / / / / / /
33	吐温 60	吨/年	0.09	0.05	
34	斯潘 60	吨/年	0.09	0.05	
35	香精	吨/年	0.03	0.02	
36	纯水	吨/年	12.12	6	用于生产柔肤乳液

表二 项目建设内容 -8-

37	甘油	吨/年	1.21	0.6	
38	硬脂酸	吨/年	1.21	0.6	
39	白油	吨/年	1.21	0.6	
40	草甘脂	吨/年	0.61	0.3	
41	乳木果油	吨/年	0.12	0.06	
42	精氨酸	吨/年	0.01	0.005	
43	香精	吨/年	0.01	0.005	
44	纯水	吨/年	99.66	50	
45	SLS	吨/年	9.98	5	
46	甜菜碱	吨/年	4.98	2.5	
47	烷基糖苷	吨/年	4.98	2.5	 用于生产洗发水
48	霍霍巴油	吨/年	0.10	0.05	月 用 月 生厂
49	阳离子瓜尔胶	吨/年	0.10	0.05	
50	聚季铵盐-10	吨/年	0.10	0.05	
51	香精	吨/年	0.10	0.05	
52	纯水	吨/年	133.25	70	
53	SLS	吨/年	13.33	6.5	
54	甜菜碱	吨/年	5.71	2.8	田工生立法次零
55	烷基糖苷	吨/年	5.71	2.8	用于生产沐浴露
56	甘油	吨/年	1.90	0.95	
57	香精	吨/年	0.10	0.05	
58	纯水	吨/年	99.44	50	
59	鲸蜡硬脂醇	吨/年	4.97	2.5	用于生产护发素
60	阳离子瓜尔胶	吨/年	0.48	0.25	用「土」「及系
61	香精	吨/年	0.11	0.05	
62	纯水	吨/年	7.55	3.8	
63	丁二醇	吨/年	0.22	0.01	
64	汉生胶	吨/年	0.01	0.005	
65	透明质酸钠	吨/年	0.01	0.005	用于生产啫喱
66	卡波姆	吨/年	0.10	0.05	
67	三乙醇胺	吨/年	0.10	0.05	
68	香精	吨/年	0.01	0.005	
			辅料		
1	PP 包装瓶	万只/年	553	260	用于业态产品包装
2	玻璃包装纸	万张/年	947	500	用于固态膜状产品包装
3	纸盒	万只/年	82.5	41	用于产品外包装
4	无纺布	万片/年	947	500	用于膜产品包装
5	铝箔	万只/年	947	500	用于膜产品包装
6	润滑油	吨/年	0.2	0.1	用于设备轴承等润滑
			能耗	I	
1	水	m³/a	6212	3000	开发区供水
2	电	万度/年	150	70	开发区供电

表二 项目建设内容 -9-

原辅材料理化性质:

序号	原料名称	项目用 量(t/a)	常温状态	包装方式	理化/说明	毒理学数据
1	丁二醇	30.6	液态	200kg 塑料 桶	又名 1,3-二羟基丁烷,是多元醇的一种,在化妆品中常做保湿剂和溶剂使用,同时具有一定的抑菌作用,对人体无毒无期激性、常温下为液体,密度为 1g/mL,沸点为207.5℃,闪点为 93℃,易燃液体,遇热或火焰可燃,贮存库房需通风低温干燥。	口服-小鼠 LD50: 3720mg/kg 腹腔-小鼠 LD50: 4192mg/kg
2	甘油	21.14	液态	30kg 塑料 桶	即丙三醇,无色无臭的粘稠状液体,有甜味,相对密度 1.26362,熔点 17.8℃,沸点 290.0℃,闪点 177℃,作溶剂使用时可被氧化成丙烯醛而有刺激性,食用对人体无毒。	口服-小鼠 LD50: 2600mg/kg 腹腔-小鼠 LD50: 4090mg/kg
3	芦芭油	0.8	液态	20kg 塑料 桶	聚甲基丙烯酸甘油酯、丙二醇、聚甲基乙烯基醚、顺式丁烯二酸酯共聚物,外观为无色透明低粘度流动液体,作为化妆品保湿剂和润滑油使用,水溶性好,pH值5-5.5。	/
4	 汉生 胶	2.22	粉末	20kg 塑料 桶+ 纸箱	又名黄原胶,可作为乳化剂、稳定剂、 凝胶增稠剂、浸润剂等使用,外观为白色 或浅黄色粉末,稍带臭味,易溶于水,溶 液中性,耐冻结和解冻,不溶于乙醇,遇 水分散、乳化变成稳定的亲水性粘稠胶体, 广泛应用于食品添加剂领域。	/
5	透明 质酸 钠	0.56	颗粒	100g 塑料 桶	又名玻尿酸钠,外观为白色或类白色颗粒或粉末,无臭味,pH值6-7.5,广泛应用于化妆品领域,可起到保护皮肤、防皱抗皱、美容保健等作用。	/
6	甘草 酸二 钾	0.53	粉末	20kg 塑料 桶	外观为白色粉末,味甘,溶于水、甘油、 丙二醇,微溶于无水乙醇、乙醚。在药理 方面具有甘草酸二钾有抗炎、抗过敏、保 湿等功效;在医药行业,可用于眼药水、 口腔炎的药膏;在化妆品行业,可用于护 肤品、面霜;在日化行业,可用于牙膏; 在食品行业,可用于运动饮料补钾剂、甜 味剂、保鲜剂、增香调味剂。	/
7	香精	0.39	半 固 态	1kg 塑料 桶	香精是赋予化妆品以一定香气的原料, 它是制造化妆品的关键原料之一,香精是 由多种香料调配混合而成,且带有一定类	/

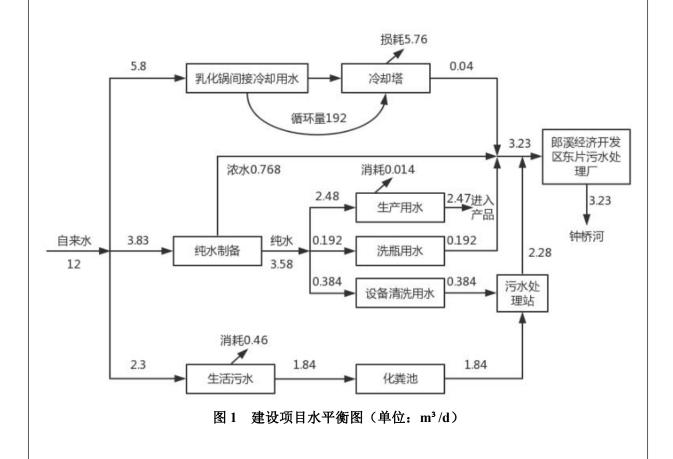
表二 项目建设内容 - 10 -

					型的香气,有液态、半固态、固态三种剂型,所用原料对人体安全并符合标准。	
8	角鲨烷	2.25	液态	25kg 纸板 箱	角鲨烷是从深海鲨鱼肝脏中提取的角鲨 烯经氢化制得一种性能优异的烃类油脂, 故又名深海鲨鱼肝油,角鲨烷是少有的化 学稳定性高,使用感极佳的动物油脂,对 皮肤有较好的亲和性,不会引起过敏和刺 激,并能加速配方中其他活性成分向皮肤 中渗透;具有较低的极性和中等的铺展性, 且纯净、无色、无异味;还可抑制霉菌的 生长。	/
9	乳木果油	1.77	液态	25kg 塑料 桶	乳木果油也称牛油树脂,提取源自乳油木,是一种具有保养功效的植物,大多生长在非洲塞内加尔与尼日利亚之间的热带雨林区,乳木果油能促进表皮细胞再生,赋予皮肤营养作用,有象牙白,米黄色和黄色3种颜色,颜色越深效果越好。	/
10	吐温 60	0.35	液态	25kg 塑料 桶	又名聚山梨酸酯 60、聚氧乙烯山梨醇酐 单硬脂酸酯,柠檬色至橙色油状液体或半 凝胶体,轻微特殊臭味,略带苦味,溶于 水、苯胺、醋酸乙酯及甲苯,不溶于矿物 油及植物油。	/
11	斯潘 60	0.35	粉末	20kg 塑料 编织 袋	又名山梨醇酐单硬脂酸酯,外观为淡黄色粉末或块状固体,微有脂肪气味,熔点56-58℃,能分散于热水,溶于热油类及一般有机溶剂,目前主要用于化妆品生产,也可用作食品、医药、农药、涂料、塑料和化妆品的乳化剂。	/
12	硬脂 酸	0.6	蜡状固体	25kg 塑料 编织 袋	即十八烷酸,外观为白色蜡状透明固体 或微黄色蜡状固体,能分散成粉末,微带 牛油气味,熔点 67-69℃,沸点 183℃,闪 点大于 110℃,不溶于水,稍溶于冷乙醇, 加热时较易溶解,微溶于丙酮、苯,易溶 于乙醚、氯仿、热乙醇、四氯化碳、二硫 化碳。	小鼠静脉注射 LD50:(23± 0.7)mg/kg 大鼠静脉注射 LD50:(21.5 ±1.8)mg/kg
13	白油	0.6	液态	180kg 铁桶	别名石蜡油,是石油精炼液态烃的混合物,外观为无色透明油状液体,室温下无嗅无味,加热后略有石油臭,密度比重0.86-0.905(25度),不溶于水、甘油、冷乙醇,溶于苯、乙醚、氯仿、二硫化碳、热乙醇。化妆品级白油,是采用加氢原料经过深度精制后得到,适用于化妆工业,可作发乳、发油、唇膏、面油、护肤油、防晒油、婴儿油、雪花膏等软膏和软化剂	/

表二 项目建设内容 - 11 -

					的基础油。	
14	単甘脂	0.3	液态	50kg 塑料 桶	又名二羟基丙基十八烷酸酯,常作为食物的塑料乳化剂和添加剂,在化妆品及医药膏剂中用作乳化剂,是一种非离子型表面活性剂,可溶于甲醇、乙醇、氯仿,丙酮和乙醚等溶液。	/
15	精氨酸	0.005	固态	铝箔 袋	又称蛋白氨基酸,是氨基酸类药,在人体内参与鸟氨酸循环,促进尿素的形成,使人体内产生的氨经鸟氨酸循环转变成无毒的尿素,由尿中排出,从而降低血氨浓度,熔点 223℃,沸点 409℃,闪点 201℃。	/
16	SLS	11.5	固态	20kg 塑料 袋	硫酸月桂酸钠、烷基硫酸盐、月桂酰醚 硫酸钠、十二烷基硫酸钠、月桂醇硫酸酯 钠,作为化妆品的表面活性剂、洗净剂、 乳化剂、起泡剂、变性剂,有良好的气泡 及去油作用。	/
17	甜菜碱	5.3	液态	200kg 塑料 桶	甜菜碱的学名为三甲基甘氨酸,外观为 无色液体,有轻微特征气味(甜味),熔点 293℃(分解),极易溶于水,易溶于甲醇, 溶于乙醇,难溶于乙醚,具有吸湿性,极 易潮解,并释放出三甲胺,耐高温。	/
18	烷基糖苷	5.3	液态	200kg 塑料 桶	烷基糖苷是指用葡葡糖和脂肪醇合成的 烷基糖苷(简称 APG),是指复杂糖苷化合物 中糖单元大于等于 2 的糖苷,统称为烷基 多糖苷(或烷基多苷)。APG 常温下呈白色固 体粉末或淡黄色油状液体,在水中溶解度 大,较难溶于常用的有机溶剂,应用于化 妆品具有增湿、降低刺激性、去污起泡等 作用。	/
19	霍霍 巴油	0.05	液态	塑料桶	又名霍霍巴、荷荷巴,一种墨西哥原生灌木植物所结种子的油,具有良好的渗透性,荷荷巴油不会引起过敏和粉刺,它和皮脂的组分接近,所以具有相当好的亲肤性,可以帮助清洁毛孔,可以柔软和滋养肌肤,并且对干燥的头皮和头发都很有好处,使头发更容易梳理。	/
20	阳离 子瓜 尔胶	0.3	粉末	25kg 塑料 袋	是一种水溶性高分子聚合物,其化学名 称为瓜尔胶羟丙基三甲基氯化铵,利用天 然瓜尔胶为原料提取,外观是从白色到微 黄色的自由流动粉末,能溶于冷水或热水, 遇水后及形成胶状物质,达到迅速增稠的 功效。	/
21	聚季 铵盐	0.05	粉 末	25kg 塑料	聚季铵盐-10 是一种化学物质,外观为淡 黄色粉末,可应用于皮肤护理方面,能保	/

表二 项目建设内容 - 12 -


	-10			桶	持肌肤湿润,具有优越水溶性和吸附能力的阳离子纤维素聚合物,能与阴离子、阳离子、非离子和两性离子表面活性剂兼容,刺激性低。	
22		4.97	颗粒	25kg 塑料 袋	其外观为白色固体结晶、颗粒或蜡块状,有香味,熔点 48-50℃,沸点 344℃,不溶于水,溶于乙醇、乙醚、氯仿和矿物油,具有抑制油腻感,降低蜡类原料黏性,稳定化妆品乳胶体等作用。	/
23	卡波姆	0.10	粉末	20kg 纸箱	丙烯酸键合烯丙基蔗糖或季戊四醇烯丙醚的高分子聚合物,别名聚丙烯酸、羧基乙烯共聚物:熔点 125℃,沸点 141℃,闪点61.6℃,外观为白色粉末,微臭,有引湿性,是化妆品常用增稠剂。	/
24	三乙醇胺	0.10	液态	200kg 铁桶	别名氨基三乙醇,沸点 360℃,熔点 21.2℃, 闪点 179℃,外观为无色至淡黄色透明粘稠 液体,微有氨味,低温时成为无色至淡黄 色立方晶系晶体,露置于空气中时颜色渐 渐变深,易溶于水、乙醇、丙酮、甘油及 乙二醇等,微溶于苯、乙醚及四氯化碳等, 在非极性溶剂中几乎不溶解,有刺激性和 吸湿性,可燃底毒。	大鼠经口 LD50: 9110mg/kg 小鼠经口 LD50: 8680mg/kg

表二 项目建设内容 - 13 -

项目水平衡:

项目用水主要为员工生活用水、乳化锅间接冷却用水、设备清洗用水、洗瓶用水以及纯水制备用水。生活污水先经化粪池预处理,再和设备清洗废水汇总由自建污水处理站处理后,和纯水制备浓水、洗瓶废水、间接冷区废水一同排入郎溪经济开发区污水管网,入郎溪经济开发区东片污水处理厂集中处理,尾水排入钟桥河。

项目用水平衡详见图 1。

表二 项目建设内容 - 14-

主要工艺流程及产污环节:

项目产品工艺流程:

本项目生产的化妆品有 10 种(精华液、面膜、眼膜、膏霜、柔肤乳液、洗面奶、洗发水、沐浴露、护发素、啫喱),其生产工艺流程基本一致,如下图

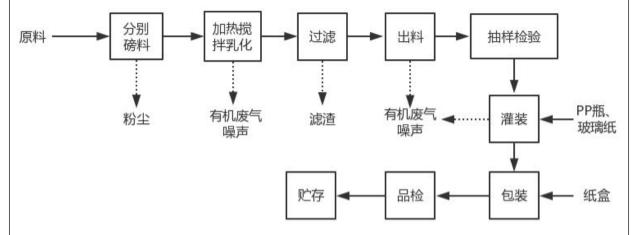


图 2 项目化妆品生产工艺流程图

化妆品生产总体流程:

- ①首先将不同原料根据配比,使用电子秤称取每批次生产所需用量,分别使用不同容器暂存;
- ②称量完成的原料,运至生产车间中,按配方工艺流程,对不同原料进行加热、搅拌等操作,最终在乳化锅中混匀;
- ③经过滤网过滤后的半成品,出料在暂存桶中暂存,待取样检验合格后,即可作为成品转运至包装车间灌装,检验结果不合格批次的产品报废作一般固废处置;
- ④对于液态或膏状产品使用 PP 瓶进行灌装,对于膜状产品使用玻璃纸封装,最后再使用纸盒包装;
 - ⑤经品管检验合格的成品进入仓库贮存。

本项目化妆品生产是纯物理混合分装过程,加热最高温度为90°C,无化学反应,仅有少量化学物质加热挥发;设备(乳化锅)加热使用电加热,冷却过程使用冷却水夹套经冷却塔循环冷却降温;生产过程使用的纯水由反渗透纯水设备制取(详见图5-3)。

项目部分原料为粉料,由于在每批次生产时用量较少,在称量时的粉尘产生量较少,项目拟设密闭称量间用于减少称量粉尘的影响。项目生产和包装均为无尘车间,设有中央空调系统,满足车间内十万级洁净度和恒温恒湿的生产要求,生产和包装过程,挥发

表二 项目建设内容 - 15-

出的有机废气(VOCs)经中央空调排风系统收集后经 1 套两级活性炭吸附装置处理后有组织排放。

精华液工艺说明:

所用原料: 纯水 (88.30%)、丁二醇 (4.42%)、甘油 (4.42%)、芦芭油 (2.20%)、 汉生胶 (0.22%)、透明质酸钠 (0.22%)、甘草酸二钾 (0.22%)。

- (1) 使用量程为 150 公斤的台秤和量程为 3 公斤的电子秤,每种原料分别称在一个容器中,不能混在一起:
- (2) 乳化锅中投入纯水,加热至 90±2℃,保温 20 分钟后慢加入丁二醇,搅拌至 透明无颗粒,冷却至 60±2℃,搅拌速度 750±50r/min:
- (3)取干燥容器①加入甘油、芦芭油加热溶解至透明无颗粒,另一容器②加入汉生胶、透明质酸钠搅拌分散均匀,待乳化锅中物料冷却至60±2℃后,将①②容器中物料缓慢投入乳化锅中搅拌混合至透明无颗粒,冷却至45±2℃,搅拌速度650±50r/min;
- (4) 特乳化锅中物料降至 45±2℃后缓慢加入甘草酸二钾, 搅掉混合均匀, 投料完毕后再搅拌 10 分钟, 搅拌速度 650±50 r/min;
- (5) 待乳化锅中物料温度降至 35±2℃后关闭冷却水,用 200 目过滤网过滤取样送检,待各项指标合格后过滤出料;
- (6) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

面膜工艺说明:

所用原料: 纯水 (90.93&)、丁二醇 (5.68%)、甘油 (2.84%)、汉生胶 (0.28%)、透明质酸钠 (0.11%)、甘草酸二钾 (0.11%)、香精 (0.05%)。

- (1) 使用量程为 150 公斤的台秤和量程为 3 公斤的电子秤,每种原料分别称在一个容器中,不能混在一起;
- (2) 在乳化锅中加入纯水,再缓慢加入丁二醇、甘油,搅拌混合加热至 90±2℃,保温搅拌溶解至无颗粒,冷却至 60±2℃,投拌速度 750±50r/min;
- (3) 待乳化锅中物料冷却至 60±2℃后加入汉生胶,搅拌混合均匀,搅排速度 750±50r/min:
 - (4) 取一干燥容器加入透明质酸钠、甘草酸二钾,搅拌分散均匀后投入乳化锅中

表二 项目建设内容 - 16-

搅拌混合至无颗粒,冷却至 45 ± 2 °C,拟拌速度 750 ± 50 r/min;

- (5) 将香精缓慢加入乳化锅中排混合均匀,搅排速度 650 ± 50 r/min;
- (6) 投料完毕,搅拌 10 分钟,待乳化锅中物料冷却至 35±2℃后关闭冷却水,用 200 目过滤网过滤取样送检,待各项指标合格后过滤出料;
- (7) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

眼膜工艺说明:

所用原料: 纯水 (82.30%)、丁二醇 (8.23%)、甘油 (8.23%)、汉生胶 (0.82%)、透明质酸钠 (0.42%)。

- (1)使用量程为150公斤的台秤和量程为3公斤的电子秤,每种原料都分别称在 合适的容器中,不能混在一起;
- (2) 在乳化锅中加入纯水,再缓慢加入丁二醇、甘油,搅拌混合加热至 90±2℃,保温搅拌溶解至无颗粒,冷却至 60±2℃,搅拌速度 750±50r/min;
- (3) 待乳化锅中物料冷却至 60±2℃后加入汉生胶,搅拌混合均匀,搅拌速度 750±50 r/min;
- (4)取一干燥容器加入透明质酸钠,搅拌分散均匀后投入乳化锅中搅拌混合至无颗粒,冷却至45±2℃,搅拌速度750±50r/min,搅拌10分钟后继续降温;
- (5) 待乳化锅中物料冷却至 35 ± 2℃后关闭冷却水,用 200 日过滤网过滤取样送检,特各项指标合格后过滤出料;
- (6) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

膏霜工艺说明:

所用原料:纯水 (71.39%)、丁二醇 (7.14%)、甘油 (7.14%)、角鲨烷 (7.14%)、乳木果油 (4.76%)、吐温 60 (1.19%)、斯潘 60 (1.19%)、香精 (0.05%)。

- (1)使用量程为150公斤的台秤和量程为3公斤的电子秤,每种原料分别称在一个容器中,不能混在一起:
- (2) 水锅①中注入纯水,加热至 85±2℃,保温 20 分钟后,缓慢加入丁二醇、甘油,搅拌混合均匀至无颗粒后冷却至 40±2℃,搅拌速度 700±50 r/min:

表二 项目建设内容 - 17-

- (3) 乳化锅②中加入角烷、乳木果油、吐温 60、斯潘 60, 边搅拌边缓慢加入香精, 搅拌速度 700±50r/min, 投料完毕打均质 2 分钟, 均质速度 850±50 r/min;
- (4) 待乳化锅②中物料分散均匀后,开真空泵抽真空,将水锅①中的物料过滤抽入乳化锅②中乳化,此过程中控制进料速度缓慢加入,搅拌速度 1100±50 r/min, 待水锅①中物料抽入一半左右时打均质 5 分钟,打均质速度 1500±50 r/min;
- (5) 待水锅①中物料抽入完毕,保持真空度-0.05MPa,搅拌速度 1100±50 r/min, 打均质 5 分钟,均质速度 1500±50 r/min;
- (6)均质完毕后再授排 5 分钟,待乳化锅②中物料冷却至 35±2℃后关闭冷却水,取样送检,持各项指标合格后出料;
- (7) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

柔肤乳液工艺说明:

所用原料:纯水 (83.08%)、丁二醇 (6.92%)、甘油 (6.92%)、乳木果油 (1.38%) 角鲨烷 (1.38%)、吐温 60 (0.14%)、斯潘 60 (0.14%)、香精 (0.04%)。

- (1) 使用量程为 150 公斤的台秤和量程为 3 公斤的电子秤,每种原料分别称在个容器中,不能混在一起;
 - (2) 乳化锅中加入纯水,加热至 85±2℃,保温 20 分钟,摔速度 500±50 r/min;
- (3)取干燥容器①加入丁二醇、甘油、乳木果油、角蜜烷,搅拌混合分散均匀后加入乳化锅中搅拌溶解至无颗粒,保温 85±2℃,搅拌速度 800±50r/min;
- (4)取干燥容器②依次加入吐温 60、斯潘 60,加热至 85±2℃,保温搅拌溶解至无颗粒:
- (5) 待乳化锅中物料溶解均匀,将容器①和②中的物料缓慢投入乳化锅中乳化,乳化锅搅拌速度 1000 ± 50 r/min,乳化温度 85 ± 2 °C,打均质 2-5 分钟,均质速度 1300 ± 50 r/min:
- (6) 待乳化完全后降温至 45±2℃,缓慢加入香精,搅拌混合均匀,搅拌速度 750±50 r/min;
- (7) 投料完毕,搅排 10 分钟,待乳化锅中物料冷却至 35±2℃后关闭冷却水,取 样送检,待各项指标合格后出料:
 - (8) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌

表二 项目建设内容 - 18-

装井自动包装完成,成品再一次检验合格后,即装箱入库贮存。

洗面奶工艺说明:

所用原料:纯水 (73.42%)、甘油 (7.34%)、硬脂酸 (7.34%)、白油 (7.34%)、单甘脂 (3.67%)、乳木果油 (0.73%)、精氨酸 (0.08%)、香精 (0.08%)。

- (1) 使用量程为 150 公斤的台秤和量程为 3 公斤的电子秤,每种原料分别称在一个容器中,不能混在一起;
 - (2) 乳化锅中缓慢加入纯水与甘油热至 85±2℃保温, 搅拌速度 400±50r/min;
 - (3) 取干燥容器①缓慢加入硬脂酸,加热至85±2℃溶解至透明无颗粒;
- (4)取干燥容器②缓慢加入 2.3%的纯水,边搅拌边加入白油,溶解完全后加入单 甘脂中,加热至 85±2℃,混合至透明无颗粒;
- (5)将容器①和②中预制好的物料投入乳化锅中搅拌混合均匀后,冷却至 60±2℃,搅拌速度 400±50 r/min:
- (6)取干燥容器③加入 2%纯水和乳木果油搅拌混合均匀,取干燥容器④加入 1% 纯水和精氨酸搅拌溶解至透明无题粒,待乳化锅中温度降至 60±2℃后,将容器③和④中预制的物料缓慢投入乳化锅中搅拌混合均匀,搅拌速度 400±50 r/min;
- (7) 待乳化锅中物料降至 45±2℃后,缓慢加入香精,搅拌混合均匀,搅拌速度 400±50 r/min:
- (8) 待乳化锅中物料降至 30±2℃结膏后停止搅拌,取样送检,待各项指标合格后出料;
- (9) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

洗发水工艺说明:

所用原料: 纯水 (83.06%)、SLS (8.32%)、甜菜碱 (4.15%)、烷基糖苷 (4.15%)、 霍巴油 (0.08%)、阳离子瓜尔胶 (0.08%)、聚季铵盐-10 (0.08%)、香精 (0.08%)。

- (1) 使用量程为 150 公斤的台秤和量程为 3 公斤的电子秤,每种原料都分别称在 合适的容器中,不能混在一起:
- (2) 乳化锅中加入纯水,缓慢加入 SLS、甜菜碱、烷基糖苷,搅拌混合加热至 90 \pm °C,保温搅拌溶解至无颗粒,冷却至 60 ± 2 °C,搅拌速度 750 ± 50 r/min:

表二 项目建设内容 - 19 -

- (3)待乳化锅中物料冷却至 60±2℃后加入霍霍巴油、阳离子瓜尔胶、聚季铵盐-10, 搅拌混合均匀,搅拌速度 750±50r/min;
- (4)取一干燥容器加入香精,搅拌分散均匀后,投入乳化锅中搅拌混合至无颗粒, 冷却至 45+2℃,搅拌速度 750+50 r/min,搅拌 10 分钟后继续降温:
- (5)待乳化锅中物料冷却至 35±2℃后关闭冷却水,用 200 目过滤网过滤取样送检, 待各项指标合格后过滤出料;
- (6) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设各备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

沐溶露工艺说明;

所用原料: 纯水 (83.28%)、SLS (8.33%)、甜菜碱 (3.57%)、烷基糖 (3.57%)、甘油 (1.19%)、香精 (0.06%)。

- (1)使用量程为150公斤的台秤和量程为3公斤的电子秤,每种原料都分别称在 合适的容器中,不能混在一起;
- (2) 乳化锅中加入纯水,缓慢加入 SLS、甜菜碱、烷基糖苷,搅拌混合加热至 90 ±2°C, 保温搅拌溶解至无颖粒,冷却至 60±2°C,搅拌速度 750±50r/min;
- (3) 待乳化锅中物料冷却至 60±2℃后加入甘油,搅拌混合均匀,搅拌速度 750±50 r/min:
- (4)取一干燥容器加入香精,搅拌分散均匀后,投入乳化锅中搅拌混合至无颗粒, 冷却至 45±2℃,搅拌速度 750±50 r/min,搅拌 10 分钟后继续降温;
- (5) 待锅中物料冷却至 35±2℃后关闭冷却水,用 200 目过滤网过滤取样送检,待 各项指标合格后过滤出料:
- (6) 检验结果微生物指标、PH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

护发素工艺说明:

- (1)使用量程为 150 公斤的台秤和量程为 3 公斤的电子秤,每种原料都分别称在 合适的容器中,不能混在一起;
 - (2) 将 A (鲸蜡硬酯醇) 加入到乳化锅加热搅拌 30min (以搅拌均匀为准,可适当

表二 项目建设内容 - 20-

延长搅拌时间),温度 75℃,搅拌速度 300±50r/min;

- (3) 将 B (纯水、阳离子瓜尔胶) 加入到水锅加热持 30min (以搅拌均匀为准,可适当延长搅拌时间),温度 75℃,搅排速度 300±50r/min;
- (4) 将加热搅拌后的 B 缓慢加入到加热搅拌后的 A 中,搅排速度 800r/min,温度 75℃:
- (5) B 加入完成后, 真空乳化 10mim, 均质速度 2500±50r/min, 真空 60cmHg, 温度 75℃, 搅拌速度 800±50 r/min:
- (6) 冷却至 45℃时加入香精, 搅拌速度 500±50 r/min, 搅拌 20 分钟然后接着降温:
- (7)待乳化锅中物料冷却至 35±2℃后关闭冷却水,用 200 目过滤网过滤取样送检, 待各项指标合格后过滤出料;
- (8) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

嗜喱工艺说明:

所用原料: 纯水(94.36%)、丁二醇(2.62%)、汉生胶(0.13%)、透明质酸钠(0.13%)、 卡波姆(1.31%)、三乙胺(1.31%)、香精(0.14%)。

- (1) 使用量程为 150 公斤的台秤和量程为 3 公斤的电子秤,每种原料分别称在一个容器中,不能混在一起;
- (2) 乳化锅中加入纯水、丁二醇,搅拌混合加热至 90 ± 2 °C,保温搅拌溶解至均匀 无颗粒,冷却至 60 ± 2 °C,搅拌速度 700 ± 50 r/min;
- (3)取一干燥容器将汉生胶、透明质酸钠混合搅拌加热溶解至透明无颗粒后,投入乳化锅中,搅拌混合均匀,搅拌速度 700±50r/min;
- (4)将卡波姆、三乙醇胺缓慢加入乳化锅中搅拌混合均匀后,冷却至 45±2℃后,再缓慢加入香精搅拌混合均匀,搅拌速度 600±50r/min;
- (5) 投料完毕后再搅拌 10 分钟, 待乳化锅中物料冷却至 35±2℃后关闭冷却水, 取样送检, 待各项指标合格后出料;
- (6) 检验结果微生物指标、pH值、密度、稳定性等达标后,使用充填设备进行灌装,并自动包装完成,成品再一次检验合格后,即装箱入库贮存。

表二 项目建设内容 - 21-

项目纯水制备工艺:

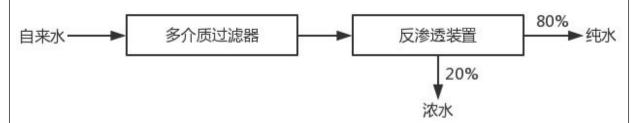


图 3 项目纯水制备工艺流程图

本项目生产车间内使用的均为纯水,制备工艺主要为:原水(自来水)先经多介质过滤器进行预处理,除去水中大部分悬浮物、胶体、颗粒状机械杂质,防止这些大颗粒杂质进入反渗透膜后堵塞反渗透膜,之后原水再经活性炭过滤去除余氯后,进入反渗透装置进行处理,经过渗透膜的即为纯水,未经过渗透膜的浓水排放市政管网。

本项目纯水设备制备的纯水达到二级纯水标准,浓水产生量约为原水量的20%。

项目变动情况:

本项目变动情况如下:

1、规模

项目环评设计年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品,实际生产过程中,生产线减少,可实现年产 700 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品。

2、废气

项目环评建议生产车间废气经中央空调系统收集后进入1套两级活性炭吸附装置, 尾气由一根25m高排气筒排放。实际生产中产生的废气经中央空调系统收集后,在车间 外无组织排放。

表二 项目建设内容 - 22 -

表三 环境保护措施

主要污染源、污染物处理和排放:

1、废水

项目废水主要为生活污水、设备清洗废水、间接冷却废水、洗瓶废水、纯水制备浓水。

生活污水经化粪池预处理,再和设备清洗废水汇总经自建污水站处理后,和洗瓶废水、纯水制备浓水、间接冷却废水一同排入郎溪经济开发区东片污水处理厂,尾水排入钟桥河。

2、废气

项目废气主要为称料粉尘、生产车间废气。

称料粉尘在车间作无组织排放,生产车间废气经空调系统收集后,经两级活性炭吸附装置处理后尾气通过 25m 高排气筒排放。

3、噪声

项目主要噪声源为乳化机、充填机、包装机等各类生产设备,声压级值约为 65~90dB(A)。建设单位对噪声的控制主要从预防、削减和管理的角度进行操作,主要体现在选用低噪声设备、隔声、减振、合理布局、加强设备维护等方面。

4、固体废弃物

废含油抹布、生活垃圾由建设单位集中收集交由环卫部门清运处置;不合格品、生产滤渣、污水站处理污泥由建设单位收集后外售物资回收单位;废活性炭由建设单位收集,安全暂存暂存危废暂存间,后交由安徽人立环保科技有限公司处置。

环保投资情况:

项目总投资 800 万元,其中环保投资 20 万元,主要用于废气处理装置等环保工程建设。项目环保投资详见表 8。

表三 环境保护措施 - 23 -

表 8 建设项目环保投资一览表						
类别	污染物	环保设施	投资金额(万元)			
废水	生活污水	化粪池、自建污水处理站	14			
废气	颗粒物	无尘车间中央空调系统	1			
噪声	设备噪声	隔声、降噪设施	2			
固体废物	生活垃圾	垃圾桶	1			
分区防渗	一般防渗区	2				
	20					

"三同时"落实情况

环评中要求建设的环保设施实际完成及运行情况,环评中提出的污染治理措施和建 议的落实情况,行政主管部门对项目的审批意见的落实等方面:

该项目各项措施落实情况较好,基本落实了环评报告和环评批复中提出的污染治理措施,具体落实情况见表 9。

表三 环境保护措施 - 24-

	表 9 建设项目"三同时"执行情况一览表							
污染源	项目	环评提出的环保措施	环评批复要求	实际落实情况				
废水	生活污水	处理后的设备清洗废水和生 活污水、洗瓶废水、纯水制备浓 水、间接冷却废水一同排入郎溪 经济开发区污水管网。	生活污水先经化粪池预处理,再和设备清洗废水汇总经自建污水站处理与其他废水达标后一同接管郎溪经济开发区东片污水处理厂。	生活污水先经化粪池预处理,再和设备清洗 废水汇总经自建污水站处理与其他废水达标 后一同接管郎溪经济开发区东片污水处理厂。				
废气	无组织颗粒 物、VOCs	称料粉尘在车间作无组织排放,生产车间废气经空调系统收集后进入1套两级活性炭吸附装置,尾气由一根25m高排气筒排放。	强化废气的收集和处理,减少无组织排放,确保各类废气达标排放。 本项目车间产生的生产车间废气拟经无尘生产车间中央空调系统收集,进入1套两级活性炭吸附装置处理,尾气由1根排气筒25m以上高空排放。	称料粉尘在车间作无组织排放,生产车间废气经空调系统收集后,进入1套两级活性炭吸附装置,尾气由一根25m高排气筒排放。				
噪声	设备噪声	设备减振、合理布局、距离衰 减、墙体隔声、隔音罩等。	选用噪声低、振动小的设备,采取减振、消声、隔声降噪等措施,减少噪声对外界环境的影响,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准要求,周边敏感点应满足2类声环境要求。	设备减振、合理布局、距离衰减、墙体隔声、隔音罩等。				
固废	生活垃圾、废 含油抹布、不 合格品、生产 滤渣、污水站 污泥和废活性 炭	废含油抹布、生活垃圾由建设单位集中收集交由环卫部门清运处置;不合格品、生产滤渣、污水站处理污泥由建设单位收集后外售物资回收单位;废活性炭由建设单位收集,安全暂存暂存危废暂存间,定期委托有资质单位集中处置。	按分类收集、贮存,分质处置的原则,认真落实固体废物收集、贮存和处置工作。危险废物必须委托有资质的处置机构处置,办理危险废物转移报批手续,并建立完整的管理台帐,确保满足危险废物规范化管理的要求。	废含油抹布、生活垃圾由建设单位集中收集 交由环卫部门清运处置;不合格品、生产滤渣、 污水站处理污泥由建设单位收集后外售物资 回收单位;废活性炭由建设单位收集,安全暂 存暂存危废暂存间,后交由安徽人立环保科技 有限公司处置。				

表四 建设项目环境影响报告结论及审批部门审批决定

建设项目环境影响评价表主要结论与建议:

根据《安徽玳妍生物科技有限公司年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目环境影响报告表》(东方环宇环保科技发展有限公司,2018 年 4 月),本项目环境影响报告表中对废水、废气、噪声及固废污染防治设施的要求如下:

表 10 建设项目拟采取的防治措施及预期治理效果一览表

污染物 类型	排放源	污染物	防治措施	预期治理效果
水污染物	总排口	COD、 BOD ₅ 、SS、 氨氮、石油 类、LAS	处理后的设备清洗废水 和生活污水、洗瓶废水、 纯水制备浓水、间接冷却 废水一同接管入郎溪经济 开发区污水管网。	满足郎溪经济开发区东片污水处理厂接管标准。
米初	污水 处理站 出水口	COD、 BOD₅、SS、 氨氮、石油 类、LAS	经自建污水处理站处理 后排入郎溪经济开发区污 水管网。	满足郎溪经济开发区东片污水 处理厂接管标准和《污水综合排放 标准》表 4 中三级标准限值。
大	称料粉 尘	颗粒物	称料粉尘:项目设有称 料间用于原料称量,称料 过程产生的粉尘在车间内 作无组织排放。	满足《大气污染物综合排放标准》(GB16297-1996)表2中标准限值(颗粒物厂界无组织监控浓度≤1.0mg/m³)。
气污染物	生产车间废气	VOCs	生产车间废气:车间内 有机废气拟经无尘生产车 间中央空调系统收集,经 1套两级活性炭吸附装置 处理,尾气由1根排气筒 25m以上高空排放。	满足《天津市工业企业挥发性有机物排放控制标准》 (DB12/524-2014)表2中"其他行业"标准限值(VOCs有组织排放浓度≤80mg/m³,排放速率≤8.3kg/h)。
噪声	生 产设备等	噪声	设备减振、合理布局、 距离衰减、墙体隔声、隔 音罩等。	达到《工业企业厂界环境噪声排放标准》(GB12348-2 008)中3类标准。
固 体	生产车间	废活性炭	建设单位收集安全暂存 于危废暂存间,定期委托 安徽人立环保科技有限公司处置。	不产生二次污染,对环境影响较
废 物		不合格品 生产滤渣 污水站污泥	建设单位收集作一般固 废妥善处置。	小。
		废包装材料	建设单位收集外售物资	

	回收单位。
废含油抹布	7.11 × 6.46 6 - 1.77 7
生活设 生活垃圾	建设单位收集交由环卫 部门清运处置。

总结论:综上所述,本项目符合国家相关产业政策,符合郎溪县总体规划要求,项目选址合理,项目所在区域环境质量现状基本符合相应的标准要求。在执行环保治理"三同时"的基础上,在切实有效落实各项环境保护和环境防范、应急对策、措施,并将环境管理纳入日常生产管理渠道的前提下,项目各项污染物能实现达标排放,建设项目在环境保护方面将得到应有的保证。本项目从环境保护角度而言是可行的。

环评审批部门审批决定:

安徽玳妍生物科技有限公司:

你单位报来的《安徽玳妍生物科技有限公司年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目环境影响报告表》及审批申请悉。经专家技术审查及我局局务会集体审议,批复如下:

- 一、本项目位于郎溪经济开发区钟梅路与白茅山路交叉口东北,租赁锦城科技园 1 栋已建生产厂房,并新建 1 间车间,投资 1500 万元建设年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目。
- 二、业主在认真落实《报告表》中提出的污染防治对策和措施的基础上,从环境保护角度分析同意你单位按《报告表》所列建设项目的性质、规模、地点、工艺、环境保护措施进行建设,并重点做好以下工作:
- 1、按要求落实水污染防治措施。生活污水先经化粪池预处理,再和设备清洗废水 汇总经自建污水站处理与其他废水达标后一同接管郎溪经济开发区东片污水处理厂。
- **2**、按要求落实大气污染防治措施。强化废气的收集和处理,减少无组织排放,确保各类废气达标排放。

本项目车间产生的生产车间废气拟经无尘生产车间中央空调系统收集,进入1套两级活性炭吸附装置处理,尾气由1根排气筒25m以上高空排放。

3、按要求落实固体废物污染防治措施。按分类收集、贮存,分质处置的原则,认 真落实固体废物收集、贮存和处置工作。危险废物必须委托有资质的处置机构处置,办 理危险废物转移报批手续,并建立完整的管理台帐,确保满足危险废物规范化管理的要求。

- 4、按要求落实噪声污染防治措施。选用噪声低、振动小的设备,采取减振、消声、隔声降噪等措施,减少噪声对外界环境的影响,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准要求,周边敏感点应满足2类声环境要求。
- 5、强化风险防范和应急措施。按要求加强运输、贮存生产等环节风险防范措施, 防范污染事件发生。

你公司须建立有效的风险防范措施及预警体系,配备相应的应急设施和物资。应急 预案须报县环保局备案,并定期开展应急培训和演练。风险防控工作纳入项目建设"三 同时"管理。

- 6、按要求做好分区防渗、规范设置排污口和固废(危废)暂存场所。
- 7、严格落实总量控制制度。你公司主要污染物排放控制在已核定的指标以内,总量控制指标完成情况纳入竣工环境保护验收内容。
- 8、认真执行国家清洁生产有关政策和制度。选用先进工艺及设备,加强对设施设备的维护和管理,提高清洁生产水平。
- 三、你单位应严格按照《报告表》进行项目建设,未经我局批准,不得擅自变更,若项目性质、规模、地点、采用的生产工艺或者污染防治措施发生重大变动,你公司应 重新报批本项目的环评文件。
- 四、项目建设应严格执行环境保护设施与主体工程同时设计、同时施工、同时投产使用的环境保护"三同时"制度项目建成后依法进行竣工环境保护验收。
 - 五、县环境监察大队负责该项目"三同时"执行情况的监督及日常监管工作。

表五 验收监测质量控制及质量保证

监测分析方法、人员及仪器:

本项目监测项目检测、分析方法详见表 11。

表 11 监测分析方法及依据一览表

监测内容	监测项目	检测依据及方法	方法检出限
 无组织	颗粒物	GB/T 15432-1995 环境空气 总悬浮颗粒物的测定 重量 法	0.001mg/m ³
废气	VOCs	HJ 644-2013 环境空气 挥发性有机物的测定 吸附管 采样-热脱附/气机色谱-质谱法	/
	COD	HJ 828-2017 水质化学需氧量的测定 重铬酸盐法	4mg/L
	BOD ₅	HJ 505-2009 水质 五日生化需氧量 (BOD ₅)的测定 稀释与接种法	0.5mg/L
	SS	GB/T 11901-1989 水质 悬浮物的测定 重量法	4mg/L
废水	NH ₃ -N	HJ 535-2009 水质氨氮的测定 纳氏试剂分光光度法	0.025mg/L
	石油类	HJ 637-2018 水质 石油类和动植物油的测定 红外分光光度法	0.06mg/L
	阴离子表 面活性剂	GB/T 7494-1987 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法	0.05mg/L
厂界噪 声	等效 声级	GB12348-2008 工业企业厂界环境噪声排放标准	/

监测仪器使用情况详见表 12。

表 12 监测仪器使用情况一览表

监测内容	监测项目	监测仪器				
监侧内谷	监侧坝日	仪器设备型号	实验室编号	检定有效期		
	颗粒物	LHS-80 恒温恒湿培养箱	EAA-048	2020.02.25		
无组织 废气	本 以不立 1/2J	FA1004 电子分析天平	EAA-029	2020.02.25		
	VOCs	GCMS-QP2010 气相色谱质谱联用仪	EAA-060	2021.2.25		
		TD-100 热脱附仪	EAA-0512	/		
	COD	HCA-102 COD 消解器	EAA-003	2020.02.25		
	BOD ₅	SPX-250BH-II智能型生化培养箱	EAA-027	2020.02.25		
		JPSJ-605 型溶解氧分析仪	EAA-031	2020.04.02		
废水	SS	101-2 电热恒温鼓风干燥箱	EAA-001	2020.02.25		
	33	FA1004 电子分析天平	EAA-029	2020.02.25		
	NH ₃ -N	722G 分光光度计	EAA-014	2020.07.01		
	石油类	JKY-3A 红外分光测油仪	EAA-037	2020.02.25		

	LAS	722G 分光光度计	EAA-014	2020.07.01
品書	等效	AWA6228 型多功能声级计	GCM-019	2020.07.29
噪声	声级	HS6020 声校准仪	GCM-033	2020.06.18

监测质量保证:

验收监测的采样记录及分析测试结果,按国家标准和监测技术规范有关要求进行数据处理和填报,并按规定进行三级审核。

1、废水检测

水样的采集、运输、保存、实验室分析和数据计算的全过程均按《环境水质监测质量保证手册》(第四版)的要求进行。采样过程采集了平行样;实验室分析过程使用标准物质,采用空白实验、平行样测定、加标回收率测定等。

项目	COD		NH ₃ -N	BOD ₅	LAS
平行样数	/	2	2	2	/
相对偏差	/	1.1-1.4	1.6%	1.3% -1.9%	0
质控编号	2001128	2001135	2005119	/	/
控样值 (mg/L)	20.0±1.9	229±9	7.32±0.28	205±25	/
监测值 (mg/L)	18.4	230	7.38	181	/
质控合格 情况	合格	合格	合格	合格	合格

表 13 废水监测质量控制措施一览表

2、废气检测

废气监测仪器均符合国家有关标准或技术要求,检测前对使用的仪器进行校准,按规定对废气测试仪进行现场检漏,采样及分析过程严格按照《固定污染源废气检测技术规范》(HJ/T 397-2007)、《固定污染源检测质量控制和质量保证技术规范》(HJ/T 373-2007)和《空气和废气监测分析方法》(第四版)进行。校准结果全部合格。

3、噪声检测

噪声测量仪器为II型分析仪器,测量方法及环境气象条件的选择按照国家有关技术规范执行。仪器使用前后均经 A 声级校准器校准,详见表 14。

表 14 噪声监测质控结果一览表(单位: dB(A))

项目	测量时间	校准前校准后		示值偏差	标准值	是否合格	
等效声 级	2019.11.17 昼间	93.8	93.8	0	±0.5	是	
等效声 级	2019.11.18 昼间	93.8	93.9	0.1	±0.5	是	

表六 验收监测内容

本次验收针对已建成项目污染物排放情况进行核查,具体监测内容如下:

1、废水监测方案

项目废水监测内容详见表 15。

表 15 建设项目竣工环境保护验收废水监测内容一览表

测点位置	项目	监测频次
污水处理站进口	COD、BOD5、SS、NH3-N、LAS、石	4次/天,连续监测2天
污水处理站出口	油类	4次/天,连续监测2天

2、废气监测方案

项目废气监测方案详见表 16。

表 16 废气监测方案

测点位置	项目	监测因子	监测频次		
车间排气筒	生产车间产生的废气	颗粒物、VOCs	3次/天,连续监测2天		
厂界	厂界上风向 1#参照点		3 次/天,连续监测 2 天		
	厂界下风向 2#监测点	即原本学 #/m NOC-	3次/天,连续监测2天		
	厂界下风向 3#监测点	- 颗粒物、VOCs	3次/天,连续监测2天		
	厂界下风向 4#监测点		3次/天,连续监测2天		

3、噪声监测

项目厂界噪声监测方案详见表 17。

表 17 厂界噪声监测方案

测点位置	项目	监测频次
东厂界 1#监测点	厂界噪声	昼间监测1次,连续监测2天
南厂界 2#监测点	厂界噪声	昼间监测 1 次,连续监测 2 天
西厂界 3#监测点	厂界噪声	昼间监测1次,连续监测2天
北厂界 4#监测点	厂界噪声	昼间监测 1 次,连续监测 2 天

表七 验收监测结果与评价

工况分析:

根据建设单位提供生产信息,验收监测期间企业生产情况见表 18。

表 18 验收监测期间工况分析一览表

设计生产能力	年产 1500 万盒 (瓶) 各类护肤膏	雪、乳液、化妆水及各类面膜产品
实际生产情况		2019年11月18日生产各类护肤膏、 乳液、化妆水及各类面膜产品2.1万盒 (瓶)。
工况分析	约 79%	约 75%

验收监测结果:

1、废水监测

2019年11月17~18日,安徽国测检测技术有限公司在对该项目废水排放达标情况进行了监测。项目外排废水监测结果见表19-20。

表 19 废水监测结果一览表 (2019.11.17)

监测项目 监测点位		COD (mg/L)	BOD ₅ (mg/L)	SS (mg/L)	NH ₃ -N (mg/L)	石油类 (mg/L)	LAS (mg/L)
	1次值	26	6.8	22	5.48	0.19	0.18
	2次值	25	6.7	25	5.56	0.21	0.17
生活污水	3次值	22	6.9	19	5.40	0.23	0.16
	4次值	22	6.8	26	5.32	0.18	0.17
	均值	24	6.8	23	5.44	0.20	0.17
	1次值	139	39.6	39	0.094	0.90	0.66
	2次值	137	36.0	44	0.143	0.96	0.64
生产废水	3次值	129	37.5	40	0.189	0.82	0.65
	4次值	125	36.7	43	0.260	0.70	0.66
	均值	133	37.5	42	0.172	0.85	0.65
标准限值		500	300	400	_	20	20
执行标准		«¥	亏水综合排放	女标准》GB:	8978-1996	表 4 三级	示准

表 20 废水监测结果一览表 (2019.11.18)

监测点位	盆测项目	COD (mg/L)	BOD₅ (mg/L)	SS (mg/L)	NH₃-N (mg/L)	石油类 (mg/L)	LAS (mg/L)
生活污水	1次值	19	5.7	25	5.44	0.16	0.17
生1015小	2次值	20	5.3	20	5.68	0.18	0.17

	3次值	18	5.2	27	5.14	0.25	0.16
	4次值	17	4.8	23	5.44	0.22	0.16
	均值	19	5.3	24	5.43	0.20	0.17
	1次值	140	37.4	40	0.090	0.98	0.68
	2次值	145	38.1	46	0.149	0.86	0.66
生产废水	3次值	152	39.1	40	0.206	0.93	0.67
	4次值	158	40.4	43	0.246	0.75	0.68
	均值	149	38.8	42	0.375	0.88	0.67
标准限值		500	300	400		20	20
执行标准		«¥	亏水综合排放	枚标准》GB	8978-1996	表 4 三级村	标准

监测结果显示:验收期间废水中监测因子 COD、BOD5、SS、NH3-N、石油类、LAS 均满足《污水综合排放标准》GB 8978-1996 表 4 中三级标准。

2、废气监测

2019年11月17~18日,安徽国测检测技术有限公司在对该项目废气排放达标情况进行了监测。

(1) 有组织废气

本次验收有组织废气监测结果见表 21。

表 21 有组织废气监测结果一览表

	1	12.21	11/41/1/2					
监测点位		计量		<u></u> 监测	结果		标准	达标
监测时间	<u>监测项目</u>	单位	1 次值	2 次值	3 次值	最大值	限值	情况
	排气筒高度	m		25				
	监测截面积	m^2		0.0	071		_	_
	烟气温度	°C	24.0	24.0	24.0	24.0	_	_
车间排气筒	烟气流速	m/s	7.1	7.2	7.3	7.3	_	_
2020.10.16	标态流量	Nm ³ /h	1635	1653	1689	1689	_	_
	颗粒物浓度	mg/m ³	<20	<20	<20	<20	120	达标
	颗粒物速率	kg/h	/	/	/	/	14.4	达标
	VOCs 浓度	mg/m ³	0.610	1.16	0.693	1.16	80	达标
	VOCs 速率	kg/h	9.97×10 ⁻⁴	1.92×10 ⁻³	1.17×10 ⁻³	1.92×10 ⁻³	8.3	达标
	排气筒高度	m		2	5			
	监测截面积	m^2		0.0	71			
车间排气筒	烟气温度	$^{\circ}\mathrm{C}$	24.0	24.0	24.0	24.0		
2020.10.17	烟气流速	m/s	7.2	7.4	7.7	7.7	_	_
	标态流量	Nm ³ /h	1671	1707	1777	1777	_	_
	颗粒物浓度	mg/m ³	<20	<20	<20	<20	120	达标

	颗粒物速率	kg/h	/	/	/	/	14.4	达标
	VOCs 浓度	mg/m ³	1.02	0.952	1.26	1.26	80	达标
	VOCs 速率	kg/h	1.70×10 ⁻³	1.63×10 ⁻³	2.24×10 ⁻³	2.24×10 ⁻³	8.3	达标

监测结果显示:验收监测期间,项目有组织排放的颗粒物排放浓度和速率均低于《大气污染物综合排放标准》GB16297-1996表2新污染源大气污染物二级排放标准限值要求;VOCs排放浓度和速率均低于《工业企业挥发性有机物排放控制标准》DB12/524-2014表2其他行业排放标准限值要求。

(2) 无组织废气

本次验收无组织废气监测结果见表 22、23。

采	样时段	温度(℃)	湿度(%)	大气压(kPa)	风速(m/s)	风向
	10:14-11:14	17.3	51	102.8	1.2	北风
2019.11.17	12:03-13:03	18.4	50	102.7	1.1	北风
	13:21-14:21	17.6	51	102.8	1.2	北风
2010 11 10	09:22-10:22	17.3	51	102.8	1.2	北风
2019.11.18	10:26-11:26	18.4	50	102.7	1.1	北风
	11:29-12:29	17.6	51	102.8	1.2	北风

表 22 无组织废气监测气象参数一览表

表 23	无组织废气	₹监测结果-	- 览表	(单位:	mg/m^3)
~~ =U			2027	\ _	1116/111

监测	监测结	果 监测点				
因子	监测时段	位	O1 上风向	O2 下风向	O3 下风向	O4 下风向
		10:14-11:14	0.070	0.105	0.157	0.122
颗粒物	2019.11.17	12:03-13:03	0.035	0.139	0.331	0.157
		13:21-14:21	0.052	0.122	0.105	0.157
标	准限值	1.0	最大值	0.334	达标率	100%
	2019.11.17	10:14-11:14	ND	ND	ND	ND
VOCs		12:03-13:03	ND	ND	ND	ND
		13:21-14:21	ND	ND	ND	ND
标	准限值	2.0	最大值	ND	达标率	100%
		09:22-10:22	0.104	0.139	0.261	0.192
颗粒物	2019.11.18	10:26-11:26	0.105	0.262	0.174	0.139
		11:29-12:29	0.052	0.139	0.279	0.209
标	准限值	1.0	最大值	0.279	达标率	100%
		09:22-10:22	ND	ND	ND	ND
VOCs	2019.11.18	10:26-11:26	ND	ND	ND	ND
		11:29-12:29	ND	ND	ND	ND

监测结果显示:验收监测期间,无组织排放颗粒物的浓度最大值低于《大气污染物综合排放标准》GB16297-1996表2新污染源大气污染物排放限值标准的要求;VOCs的浓度最大值低于《天津市工业企业挥发性有机物排放控制标准》DB12524-2014表2其他行业标准限值的要求。

3、噪声监测

2019年1月17~18日,安徽国测检测技术有限公司在对该项目厂界噪声达标情况进行了监测。监测结果见表 20。

监测时间	测点序号	测点位置	昼间				
	1	东厂界外 1m	55.6				
2019年11月17日	A 2	南厂界外 1m	54.4				
2019年11月17日	▲3	西厂界外 1m	54.7				
	A 4	北厂界外 1m	53.4				
	1	东厂界外 1m	54.5				
2019年11月18日	A 2	南厂界外 1m	55.2				
2019年11月16日	▲3	西厂界外 1m	54.4				
	4	北厂界外 1m	52.7				
	标准限值	≤60					
执行标准	执行标准 《工业企业厂界环境噪声排放标准》GB12348-2008 中 2 类标准限值						

表 20 厂界噪声监测结果一览表(单位: Leq dB(A))

监测结果表明:验收监测期间,该项目各厂界噪声监测点位昼间噪声均小于《工业企业厂界环境噪声排放标准》GB12348-2008 中 2 类标准限值。

表八 验收监测结论

项目概况:

安庆玳妍生物科技有限公司年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目于 2018 年 1 月 16 日经郎溪县发展和改革委员会备案,项目编码为 2018-341821-26-03-00 0986;项目委托东方环宇环保科技发展有限公司承担项目环境影响评价工作;郎溪县环境保护局于 2018 年 11 月 7 日对项目环境影响评价表进行审批,审批文号为:郎环函【2018】313 号。

项目于 2018 年 11 月开工建设, 2019 年 5 月进入试生产阶段。项目实际投资 800 万元,建设"年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目",项目租赁锦城科技园 1 栋已建成生产厂房,配套建设相关仓储设施、环保设施等。项目建设过程中基本做到了环保设施与主体工程同时设计、同时施工、同时投产运营。项目已建成部分试生产后向我公司提出了建设项目竣工环境保护验收监测申请。

本次验收监测范围针对建设项目已建成的相关主体工程、公用工程、储运工程和环保工程的运行及措施执行情况。验收监测内容有废水、废气、噪声监测及固体废物、环境管理检查核查等。

主要污染物产生、治理及排放达标情况:

1、废水

经核查,项目用水主要为员工生活用水、乳化锅间接冷却用水、设备清洗用水、洗瓶用水以及纯水制备用水。生活污水先经化粪池预处理,再和设备清洗废水汇总由自建污水处理站处理后,和纯水制备浓水、洗瓶废水、间接冷区废水一同排入郎溪经济开发区污水管网,入郎溪经济开发区东片污水处理厂集中处理,尾水排入钟桥河。

监测结果显示:验收期间废水中监测因子 COD、BOD5、SS、NH3-N、石油类、LAS 均满足《污水综合排放标准》GB 8978-1996 表 4 中三级标准。

2、无组织废气

监测结果显示:验收监测期间,项目有组织排放的颗粒物排放浓度和速率均低于《大气污染物综合排放标准》GB16297-1996表 2新污染源大气污染物二级排放标准限值要

求; VOCs 排放浓度和速率均低于《工业企业挥发性有机物排放控制标准》DB12/524-2014 表 2 其他行业排放标准限值要求。

厂界下风向监测点颗粒物的浓度最大值低于《大气污染物综合排放标准》 GB16297-1996 表 2 新污染源大气污染物排放标准限值的要求; VOCs 的浓度最大值低于《天津市工业企业挥发性有机物排放控制标准》 DB12524-2014 表 2 其他行业标准限值的要求。

3、噪声

监测结果表明:验收监测期间,该项目各厂界噪声监测点位昼间噪声均小于《工业企业厂界环境噪声排放标准》GB12348-2008 中 2 类标准限值。

4、固体废弃物

废含油抹布、生活垃圾由建设单位集中收集交由环卫部门清运处置;不合格品、生产滤渣、污水站处理污泥由建设单位收集后外售物资回收单位;废活性炭由建设单位收集,安全暂存暂存危废暂存间,定期委托安徽人立环保科技有限公司处置。

后续建议:

- 1、建设单位应加强日常生产管理管理,健全污染治理设备定期维修检查制度,杜 绝非正常状况的发生。
- 2、加强环保监测,对各排污点进行例行监测,发现问题及时处理,确保污染防治措施的正常运行。
- 3、严格执行"三同时"制度,确保项目运营过程各项污染指标达标排放。将环境管理纳入日常生产管理渠道,安排专业技术人员维护环保设施的正常运行。接受当地环保部门的检查与指导,配合环保部门做好本项目的环境保护工作。

建设项目竣工环境保护"三同时"验收登记表

填表单位 (盖章): 安徽国测检测技术有限公司

填表人 (签字):

项目经办人(签字):

	项目名称	年产		各类护肤膏、乳 面膜产品项目	夜、化妆水	项目代码	项目代码 2018-341821-26-03-000986		建设地点	安徽省郎溪经济开发区白茅山路与钟梅路交叉技园		口东北锦城科		
	行业类别(分类管理名录) 化妆品制造 C2682		建设性	:质	√新建	□改扩建	□技术改造	环评单位	东方	环宇环保科技发展	有限公司			
	设计生产能力	设计生产能力 年产 1500 万盒(瓶)各类护肤膏、乳液、化物		女水及各类面膜	漢产品	实际生	三产能力	年产 1500	万盒 (瓶) 各类抗	計勝膏、乳液	、化妆水及各类面	膜产品		
建	环评文件审批机	文件审批机关 郎溪县环境保护局		审批文号			郎环函【2018	3】313 号	环评文	工件类型	报台			
设项	开工时间	开工时间 2019 年 5 月		竣工时	·间		2019年	8月	排污许可	证申领时间		/		
月月	环保设施设计单位	立		1		环保设施施	江单位		1		本工程排汽	5许可证编号		/
	验收单位		安徽玳妍生	三物科技有限公司		环保设施监	测单位		1		验收监	测时工况	75%	以上
	实际总投资(万元	Ē)		1500		实际环保投资	资(万元)		25		所占比·	例 (%)	1.6	57%
	废水治理 (万元)	0.5	废气治理	【(万元)	10	噪声治理(7	万元)	2	固体废物治理	(万元) 0.5	绿化及环评(万	元) /	其他(万元) /
	新增污水处理	设施能力		/		新增废气	处理设施	能力		/			年平均工作时长	/
	运营单位		安徽	玳妍生物科技有阿	艮公司	运营单位社会	会统一信用	月代码 (或	组织机构代码)	9134	1821MA2R90PR4F	2	验收时间	2019.11
	污染物	原有排	本期工程实际	本期工程允许	本期工程	本期工程自	本期	工程实际	本期工程核定	本期工程"以	新 全厂实际排	全厂核定排	区域平衡替代	排放增减量
污染		放量(1)	排放浓度(2)	排放浓度(3)	产生量(4)	身削减量(5	(排放	量(6)	排放总量(7)	带老"削减量(8) 放总量 (9)	放总量(10)	削减量(11)	(12)
物排	PE-nk						0.	.8075						+0.8075
放达	COD		78.5	500			0.0	000634						+0.000634
标与	NH3-N		2.81	/			0.00	000227						+0.0000227
	废气							180						+180
总量	颗粒物		<20	120				/						/
控制	挥发性有机物		1.26	80			0.0	00224						+0.00224
	工业固体废物													

注: 1、排放增减量: (+) 表示增加, (-) 表示减少。2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1)3、计量单位: 废水排放量——万吨/年; 废气排放量——万立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升; 大气污染物排放浓度——毫克/立方米; 水污染物排放量——吨/年; 大气污染物排放湿量——吨/年

附件清单:

本验收监测报告附有以下附件、附图:

附件1 环评批复

附件2 委托书

附件3 验收检测报告

附图 1 项目地理位置图

附图 2 厂区平面布置图

附件1 环评批复

郎溪县环境保护局

郎环函[2018]313号

关于安徽玳妍生物科技有限公司年产1500 万盒(瓶)各类护肤膏、乳液、化妆水 及各类面膜产品项目环境影响 报告表审批意见的函

安徽玳妍生物科技有限公司:

你单位报来的《安徽玳妍生物科技有限公司年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目 环境影响报告表》及审批申请悉。经专家技术审查及我局局 务会集体审议,批复如下:

- 一、本项目位于郎溪经济开发区钟梅路与白茅山路交叉口东北,租赁锦城科技园1栋已建生产厂房,并新建1间车间,投资1500万元建设年产1500万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜产品项目。
- 二、业主在认真落实《报告表》中提出的污染防治对策和措施的基础上,从环境保护角度分析同意你单位按《报告表》所列建设项目的性质、规模、地点、工艺、环境保护措施进行建设,并重点做好以下工作:
- 1、按要求落实水污染防治措施。生活污水先经化粪池 预处理,再和设备清洗废水汇总经自建污水站处理与其他废

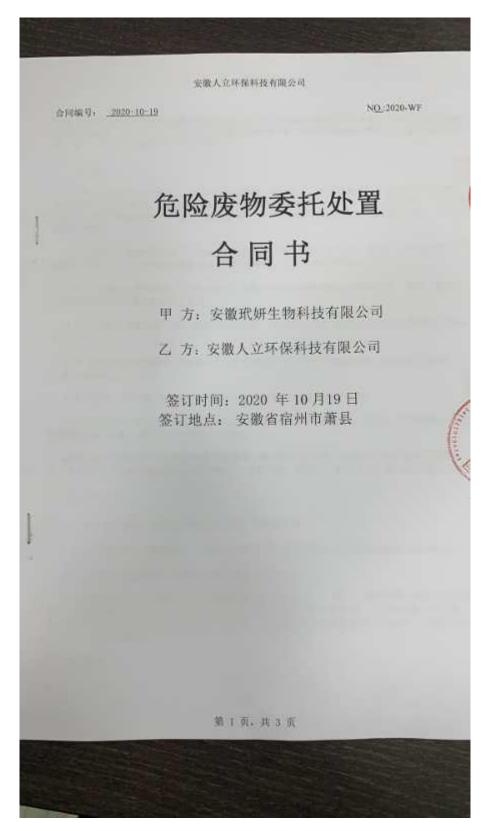
水达标后一同接管郎溪经济开发区东片污水处理厂。

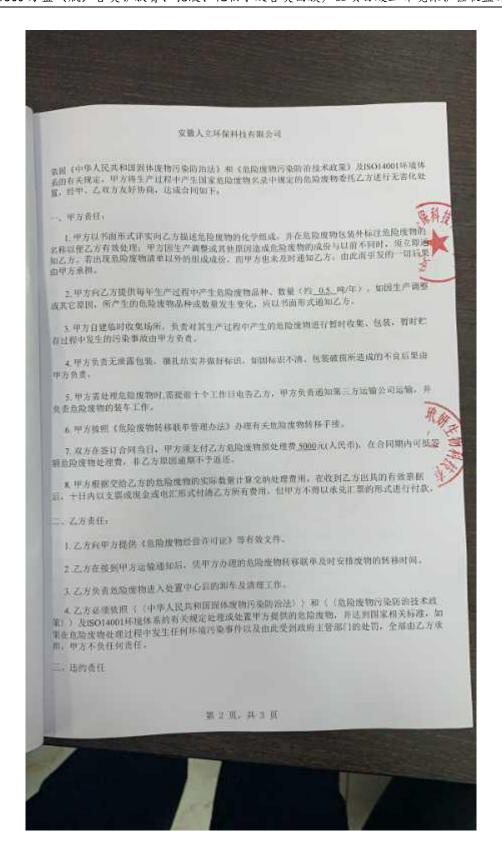
2、按要求落实大气污染防治措施。强化废气的收集和 处理,减少无组织排放,确保各类废气达标排放。

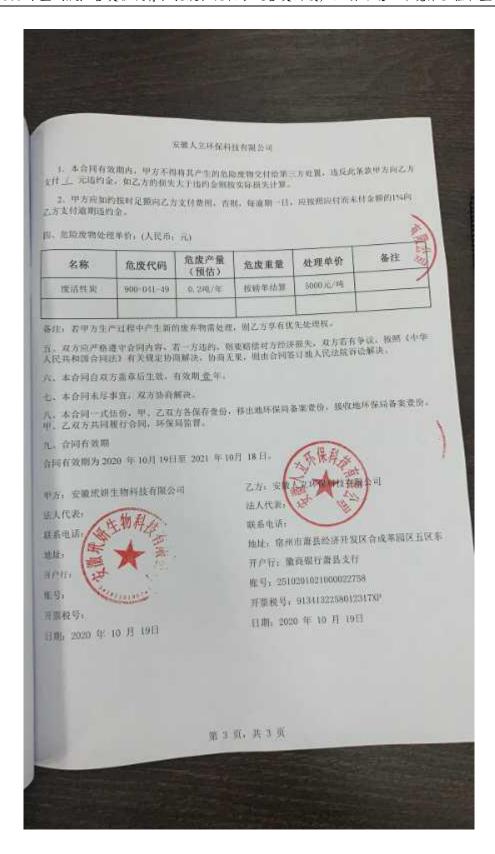
本项目车间产生的生产车间废气拟经无尘生产车间中央空调系统收集,进入1套两级活性炭吸附装置处理,尾气由1根排气筒25m以上高空排放。

- 3、按要求落实固体废物污染防治措施。按分类收集、贮存,分质处置的原则,认真落实固体废物收集、贮存和处置工作。危险废物必须委托有资质的处置机构处置,办理危险废物转移报批手续,并建立完整的管理台帐,确保满足危险废物规范化管理的要求。
- 4、按要求落实噪声污染防治措施。选用噪声低、振动小的设备,采取减振、消声、隔声降噪等措施,减少噪声对外界环境的影响,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准要求,周边敏感点应满足2类声环境要求。
- 5、强化风险防范和应急措施。按要求加强运输、贮存、 生产等环节风险防范措施,防范污染事件发生。

你公司须建立有效的风险防范措施及预警体系,配备相应的应急设施和物资。应急预案须报县环保局备案,并定期开展应急培训和演练。风险防控工作纳入项目建设"三同时"管理。


6、按要求做好分区防渗、规范设置排污口和固废(危废)暂存场所。


- 7、严格落实总量控制制度。你公司主要污染物排放控制在已核定的指标以内,总量控制指标完成情况纳入竣工环境保护验收内容。
- 8、认真执行国家清洁生产有关政策和制度。选用先进工艺及设备,加强对设施设备的维护和管理,提高清洁生产水平。
- 三、你单位应严格按照《报告表》进行项目建设,未经 我局批准,不得擅自变更,若项目性质、规模、地点、采用 的生产工艺或者污染防治措施发生重大变动,你公司应重新 报批本项目的环评文件。
- 四、项目建设应严格执行环境保护设施与主体工程同时设计、同时施工、同时投产使用的环境保护"三同时"制度。项目建成后依法进行竣工环境保护验收。


五、县环境监察大队负责该项目"三同时"执行情况的监督及日常监管工作。

2018年11月7日

附件2 危废合同

附件3 委托书

建设项目环境保护验收监测委托书

安徽国测检测技术有限公司:

我司<u>年产 1500 万盒(瓶)各类护肤膏、乳液、化妆水及各类面膜</u>产品项目 已按照环境影响报告表及批复要求建设完毕,现已具备验收监测条件,特委托贵公司对本项目进行环境保护"三同时"验收监测。

安徽玳妍生物科技有限公司 2019 年 10 月 10 日

附件4 企业生产情况说明

生产说明

安徽国测检测技术有限公司:

我司验收监测期间生产产量如下:

产品名称	2019.11.17	2019.11.18		
各类化妆品(万套)	2.2	2.1		

安徽玳妍生物科技有限公司

2019年11月21日

附件 5 验收检测报告

报告编号: AH2019111104 第 2页共 13页

检测报告

受检单位名称	称 安徽玳研生物科技有限公司							
受检单位地址	安徽省郎溪经济开发区白茅	各交叉口东北锦城科技园内						
联系人	林学崧	联系电话	13955519207					
样品类别	无组织废气、废水、噪声	☑ 采样人□ 送样人	范琪、王瑞阳					
☑ 采样日期 □ 送样日期	2019年11月17日至2019年11月18日	分析日期	2019年11月17日至2019年12月09日					
检测目的	THE WAY	委托检测						
检测内容	无组织废气:颗粒物、VOCs 废水:化学需氧量、五日生化需氧量、悬浮物、氨氮、石油类、阴离子表面活性剂 噪声:厂界噪声(昼间)							
备注	检测结果中"1	VD"表示低于	一方法检出限。					

CHINA TESTING
INTERNATIONAL GROUP

地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《 Hotline 0551-65165099

と。原王司、

报告编号: AH2019111104 第 3页共 13页

检测报告

检测项目	检测依据	检出限	使用仪器
颗粒物	GB/T 15432-1995 环境空气 总悬浮颗粒物的测定 重量法	0.001mg/m ³	LHS-80 恒温恒湿培养箱、 FA1004 电子分析天平
化学需氧量	HJ 828-2017 水质化学需氧量的测定 重铬酸盐法	4mg/L	HCA-102 COD 消解器
五日生化需氧量	HJ 505-2009 水质 五日生化需氧量 (BOD ₅) 的测定 稀释与接种法	0.5mg/L	SPX-250BH-II智能型生化培养 箱、JPSJ-605 型溶解氧分析仪
悬浮物	GB/T 11901-1989 水质 悬浮物的测定 重量法	4mg/L	101-2 电热恒温鼓风干燥 箱、FA1004 电子分析天平
氨氮	HJ 535-2009 水质氨氮的测定 纳氏试剂分光光度法	0.025mg/L	722G 分光光度计
石油类	HJ 637-2018 水质 石油类和动植物油的测定 红外分光光度法	0.06mg/L	JKY-3A 红外分光测油仪
阴离子表面活性剂	GB/T 7494-1987 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法	0.05mg/L	722G 分光光度计
工业企业厂界环 境噪声	GB 12348-2008 工业企业厂界环境噪声排放标准		AWA6228 型多功能声级计、 HS6020 声校准器

CHINA TESTING INTERNATIONAL GROUP 地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《 Hotline 0551-65165099

报告编号: AH2019111104 第 4页共 13页

检测报告

=== 14	检测项目	检测依据	检出限	使用仪器
	1,1-二氯乙烯		$0.3 \mu g/m^3$	=======================================
	1,1,2-三氯-1,2,2-三氟乙烷		$0.5 \mu g/m^3$	
	氯丙烯	- 40% ====	$0.3 \mu g/m^3$	THE WAR
M. P. ST	二氯甲烷	The second second	$1.0 \mu g/m^3$	E E MAN
	1,1-二氯乙烷		$0.4 \mu g/m^3$	
	顺式-1,2-二氯乙烯		$0.5 \mu g/m^3$	
	三氯甲烷		$0.4 \mu g/m^3$	
	1,1,1-三氯乙烷		$0.4\mu g/m^3$	
	四氯化碳	THE WAR IN	$0.6 \mu g/m^3$	THE WALL
三用歌 。	1,2-二氯乙烷		$0.8 \mu g/m^3$	
	苯	_== _== _	$0.4 \mu g/m^3$	
	三氯乙烯		$0.5 \mu g/m^3$	
= 1	1,2-二氯丙烷	- WO W	$0.4 \mu g/m^3$	NA ISB
	顺式-1,3-二氯丙烯	Market Company	$0.5 \mu g/m^3$	Service Control of the Control of th
	甲苯	THE MEN T	$0.4 \mu g/m^3$	THE WAR
422 HZ ML	反式-1,3-二氯丙烯		0.5μg/m ³	GCMS-QP2010
挥发性 有机物	1,1,2-三氯乙烷	HJ 644-2013 环境空气 挥发性有	$0.4\mu g/m^3$	气相色谱质谱联
组织废气	四氯乙烯	机物的测定 吸附管采样-热脱附/ 气机色谱-质谱法	$0.4 \mu g/m^3$	用仪、TD-100
组织及(1,2-二溴乙烷	一个1.巴诺-灰诺法	$0.4 \mu g/m^3$	热脱附仪
	氯苯	= = 12	$0.3 \mu g/m^3$	= 1 mm
	乙苯	- TOME	$0.3 \mu g/m^3$	
	间,对-二甲苯		0.6μg/m ³	
===	邻-二甲苯		0.6μg/m ³	
	苯乙烯		$0.6 \mu g/m^3$	- at #
= 40.8	1,1,2,2-四氯乙烷	一三 "哪样"	$0.4 \mu g/m^3$	
E little and	4-乙基甲苯		$0.8 \mu g/m^3$	
	1,3,5-三甲基苯		$0.7 \mu g/m^3$	
-	1,2,4-三甲基苯		$0.8 \mu g/m^3$	= #0# 1
	1,3-二氯苯	THE PARTY NAMED IN COLUMN TO THE PARTY NAMED	0.6μg/m ^{3*}	夏阳 四年
	1,4-二氯苯		$0.7 \mu g/m^3$	
	苄基氯	- FUNNIN	$0.7\mu g/m^3$	
= = =	1,2-二氯苯	- The same of the	$0.7\mu g/m^3$	
	1,2,4-三氯苯		$0.7\mu g/m^3$	
	六氯丁二烯		0.6μg/m ³	THE WAR

CHINA TESTING
INTERNATIONAL GROUP

地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

报告编号: AH2019111104 第 5页共 13页

检测报告

无组织废气监测结果 (2019.11.17):

	儿组织版	【监侧结米(20	19.11.17):						
STATE OF THE PARTY	检测项目	测点位置	01 上风向	O2 下风向	O3 下风向	O4 下风向			
W.	MR.潜 三	1次值	0.070	0.105	0.157	0.122			
	颗粒物 (mg/m³)	2 次值	0.035	0.139	0.331	0.157			
	(mg/m)	3 次值	0.052	0.122	0.105	0.157			
	无组织排放	监控浓度限值	THE WAR S		.0				
	执行	标准	GB 16297-1996《大	气污染物综合排放杨	准》表2新污染源	大气污染物排放限值			
1	三 和加加。	1 次值	ND	ND	ND	ND			
	VOCs (mg/m³)	2 次值	ND	ND	ND	ND			
	(IIIg/III)	3 次值	ND	ND	ND	ND			
	标》		2.0						
	参照抄	行标准	DB12524-2014 《	天津市工业企业挥发	性有机物排放控制标	准》表2 其他行业			
11111	. 备	·注	"O"表示无组织排放厂界监测点。						
The state of the s	布点示意图:								

CHINA TESTING
INTERNATIONAL GROUP

地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《O Hotline 0551-65165099

报告编号: AH2019111104 第 6页共 13页

检测报告

无组织废气监测结果 (2019.11.18):

儿组外及	(皿砂油木 (20	15.11.167:			
检测项目	测点位置	O1 上风向	O2 下风向	O3 下风向	O4 下风向
MARK E	1次值	0.104	0.139	0.261	0.192
颗粒物 (mg/m³)	2 次值	0.105	0.262	0.174	0.139
(ing in)	3 次值	0.052	0.139	0.279	0.209
无组织排放	监控浓度限值	THE STATE OF	1	.0	
执行	标准	GB 16297-1996《大	气污染物综合排放标	准》表2新污染源	大气污染物排放限值
E William	1次值	ND	ND	ND	ND
VOCs (mg/m³)	2 次值	ND	ND	ND	ND
(mg/m ⁻)	3 次值	ND	ND	ND	ND ND
标准	标准限值 2.0				
参照执	行标准	DB12524-2014 (天津市工业企业挥发	性有机物排放控制标	准》表2 其他行业
备	注	MAN E	"O"表示无组织	排放厂界监测点。	==
布点示意图: ▲ N	UMPER STATE	钟梅路		风向	
		- MANUA	白茅山路		

CHINA TESTING
INTERNATIONAL GROUP

地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《 Hotline 0551-65165099

报告编号: AH2019111104 第7页共13页

检测报告

废水监测结果 (2019.11.17):

检测点位	检测项目	化学需氧量 (mg/L)	五日生化需 氧量(mg/L)	悬浮物 (mg/L)	氨氮 (mg/L)	石油类 (mg/L)	阴离子表面 活性剂 (mg/L)
	1 次值	26	6.8	22	5.48	0.19	0.18
化江江小	2 次值	25	6.7	25	5.56	0.21	0.17
生活污水	3 次值	22	6.9	19	5.40	0.23	0.16
MINNE W	4 次值	22	6.8	26	5.32	0.18	0.17
= **!	1次值	139	39.6	39	0.094	0.90	0.66
生产废水	2 次值	137	36.0	44	0.143	0.96	0.64
工) 极小	3 次值	129	37.5	40	0.189	0.82	0.65
E E WA	4 次值	125	36.7	43	0.260	0.70	0.66
标准	限值	500	300	400	THE WAR	20	20
执行	标准		《污水综合排	放标准》GB 8	8978-1996 表	4 三级标准	MA .

样品照片:

CHINA TESTING INTERNATIONAL GROUP 地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

报告编号: AH2019111104 第 8页共 13页

检测报告

废水监测结果 (2019.11.18):

检测点位	检测项目	化学需氧量 (mg/L)	五日生化需 氧量(mg/L)	悬浮物 (mg/L)	氨氮 (mg/L)	石油类 (mg/L)	阴离子表面 活性剂 (mg/L)
	1 次值	19	5.7	25	5.44	0.16	0.17
4-25-24	2次值	20	5.3	20	5.68	0.18	0.17
生活污水	3 次值	18	5.2	27	5.14	0.25	0.16
	4次值	17	4.8	23	5.44	0.22	0.16
= "	1 次值	140	37.4	40	0.090	0.98	0.68
生产废水	2 次值	145	38.1	46	0.149	0.86	0.66
土厂及小	3 次值	152	39.1	40	0.206	0.93	0.67
ET W	4 次值	158	40.4	43	0.246	0.75	0.68
标准	 達限值	500	300	400		20	20
执行	一标准		《污水综合排	放标准》GB 8	8978-1996 表	4 三级标准	NES.

样品照片:

CHINA TESTING INTERNATIONAL GROUP 地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《 Hotline 0551-65165099

报告编号: AH2019111104 第 9页共 13页

检测报告

环境监测气象参数:

采样	时段	温度 (℃)	湿度 (%)	大气压(kPa)	风速 (m/s)	风向
and E	10:14-11:14	17.3	51	102.8	1.2	北风
2019.11.17	12:03-13:03	18.4	50	102.7	1.1	北风
	13:21-14:21	17.6	51	102.8	1.2	北风
	09:22-10:22	17.3	51	102.8	1.2	北风
2019.11.18	10:26-11:26	18.4	50	102.7	1.1	北风
	11:29-12:29	17.6	51	102.8	1.2	北风

质控数据统计:

质控措施	质控措施		平行样		加标回收	
	标准值 (mg/L)	测得值 (mg/L)	数量	相对标准偏差(%)	数量	回收率
化学需氧量 ·	20.0±1.9	18.4	1	1		
10.111	229±9	230	2	1.1-1.4		
氨氮	7.32±0.28	7.38	2	1.6	/	
五日生化需氧量	205±25	181	2	1.3-1.9	T	= 1
阴离子表面活性剂		1		0	1	1

CHINA TESTING
INTERNATIONAL GROUP

地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《O Hotline 0551-65165099

报告编号: AH2019111104 第 10页共 13页

检测报告

厂界噪声质量现状监测结果:

	监测时间	校正值 dB(A): 94.0		
	血粉11円		测试后 dB(A)	
昼间	2019年11月17日13时06分至13时37分	93.8	93.8	
夜间			1	

		+ 13 18 H 15 H		运车	专状态	
主要噪声源 情况 ——	生 日 日	车间设备名称 及型号	昼	昼间		间
		及至于	开(台)	停(台)	开(台)	停(台)
IHOU	1	1	1	1	13	- 1
	100		1	1	1	1

测点编号	监测位置	主要声源	测点距声	等效声级 dB(A)
C me we had	血例区且	工女产你	源距离 (m)	昼间
1,18	东厂界外 1m	1_		55.6
2	南厂界外 1m		1	54.4
3	西厂界外 1m	1	1	54.7
4	北厂界外 1m	1		53.4
	标准阳	建值		≤60
执行标准	WA ETE	GB12348-2008	工业企业厂界环境吗	噪声排放标准 2 类
布点示意图:	100			

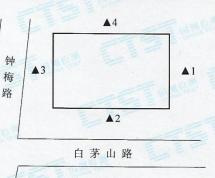
CHINA TESTING
INTERNATIONAL GROUP

地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

报告编号: AH2019111104 第 11页共 13页

检测报告

厂界噪声质量现状监测结果:


	监测时间	校正值 dB(A): 94.0		
	m 160 h.) [n]	测试前 dB(A)	测试后 dB(A)	
昼间	2019年11月18日13时48分至14时18分	93.8	93.9	
夜间		1 1 1	1	

主要噪声源情况		+ M 10 4 4 16		运车	专状态	
	车间工段	车间设备名称 及型号	昼间		夜间	
			开(台)	停(台)	开(台)	停(台)
IHIUL	1		1	1	=13	1
	110	===1	1===	14/8/	1	1

测点编号	监测位置	监测位置 主要声源	测点距声	等效声级 dB(A)
例点夠与	则 从 编 节 监 测 似 直	工女尸你	源距离 (m)	昼间
1,000	东厂界外 1m	1		54.5
2	南厂界外 1m	1	1	55.2
3	西厂界外 1m	1	1	54.4
4	北厂界外 1m	1		52.7
	标准队	建 值		≤60
执行标准	WAY ETE	GB12348-2008	工业企业厂界环境喝	桑声排放标准 2 类

布点示意图:

CHINA TESTING INTERNATIONAL GROUP 地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

报告编号: AH2019111104 第 12页共 13页

检测报告

****报告结束**** 电子版仅供参考,以纸质版为准

CHINA TESTING
INTERNATIONAL GROUP

地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《 Hotline 0551-65165099

报告编号: AH2019111104 第13页共13页

报告说明

- 1、报告无"检测报告专用章"或检测单位公章无效。
- 2、复制报告未重新加盖"检测报告专用章"或检测单位公章无效。
- 3、报告无编制、审核、批准人签字无效。
- 4、报告涂改无效。
- 5、对检测报告若有异议,应于收到报告之日起十日内向检测单位提出, 逾期不予受理。
- 6、本报告检测结果仅对被测地点、对象及当时情况有效,送样委托检测 结果仅对所送委托样品有效。
- 7、除客户特别申明并支付样品管理费,所有超过标准规定时效期的样品 均不再做留样。
- 8、除客户特别申明并支付档案管理费,本次检测的所有记录档案保存 期限为六年。
- 9、部分复印无效。
- 10、客户提供的信息和指定检测内容不符合规范的情况,我司概不负责。

CHINA TESTING INTERNATIONAL GROUP 地址:安徽省合肥市庐阳区工投·兴庐科技产业园3号楼B区3层

网址:www.cntesting.com.cn 《 Hotline 0551-65165099

报告编号: AH2020092502 第1页共5页

检测报告

副本

委托单位:

安徽玳研生物科技有限公司

单位地址:安徽省郎溪经济开发区白茅山路与钟梅路交叉口东北

检测类别:

委托检测

编制: 水水

审核: 工了

批 准: 8

日期: 2020.10.26

安徽国测检测技术有限公司

CHINA TESTING INTERNATIONAL GROUP

报告编号: AH2020092502 第3页共5页

检测报告

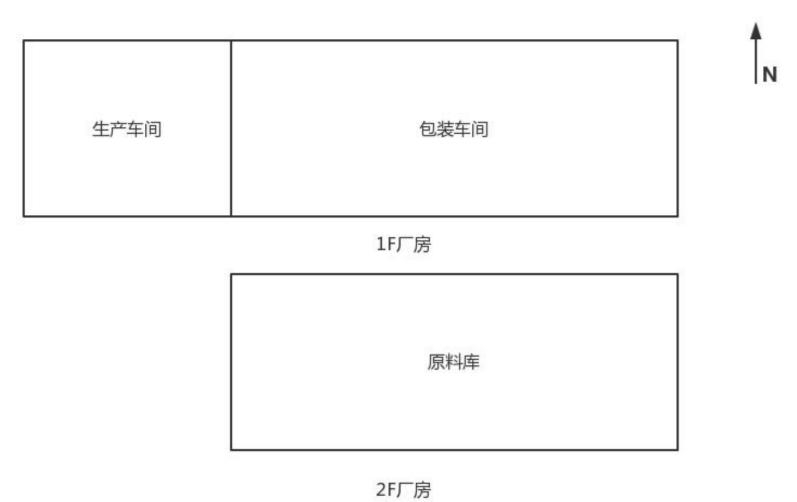
检测项目	检测依据	检出限	使用仪器
万酮		0.01mg/m ³	
异丙醇		0.002mg/m ³	
正己烷		0.004mg/m ³	
乙酸乙酯		0.006mg/m³	
苯		0.004mg/m³	
六甲基二硅氧烷		0.001mg/m ³	
3-戊酮		0.002mg/m³	
正庚烷		0.004mg/m³	
甲苯		0.004mg/m ³	
环戊酮		0.004mg/m ³	GCMS-QP2010 气质月 色谱仪、TD-100 热肋 附仪
乳酸乙酯	 固定污染源废气	0.007mg/m³	
乙酸丁酯	挥发性有机物的测定 固相吸附-热脱附 / 气相色谱-质谱法 HJ 734-2014	0.005mg/m ³	
丙二醇单甲醚乙酸酯	THE MANAGEMENT AND ADDITIONAL PROPERTY OF THE	0.005mg/m³	
乙苯		0.006mg/m ³	
对/间二甲苯		0.009mg/m³	
2-庚酮		0.001mg/m³	
苯乙烯		0.004mg/m ³	
邻二甲苯		0.004mg/m ³	
苯甲醚		0.003mg/m³	
苯甲醛		0.007mg/m³	
1-癸烯		0.003mg/m ³	
2-壬酮		0.003mg/m ³	
1-十二烯		0.008mg/m ³	

CHINA TESTING地址: 安徽省合肥市庐阳区-工投兴庐科技产业园 3 栋 B 区 3 楼INTERNATIONAL GROUP网址: www.cntesting.com.cnTEL:0551-65165099

报告编号: AH2020092502 第 5页共 5页

报告说明

- 1、报告无"检测报告专用章"或检测单位公章无效。
- 2、复制报告未重新加盖"检测报告专用章"或检测单位公章无效。
- 3、报告无编制、审核、批准人签字无效。
- 4、报告涂改无效。
- 5、对检测报告若有异议,应于收到报告之日起十日内向检测单位提出, 逾期不予受理。
- 6、本报告检测结果仅对被测地点、对象及当时情况有效,送样委托检测 结果仅对所送委托样品有效。
- 7、除客户特别申明并支付样品管理费,所有超过标准规定时效期的样品均不再做留样。
- 8、除客户特别申明并支付档案管理费,本次检测的所有记录档案保存期限为六年。
- 9、部分复印无效。
- 10、客户提供的信息和指定检测内容不符合规范的情况,我司概不负责。


CHINA TESTING 地址: 安徽省合肥市庐阳区--INTERNATIONAL GROUP 网址: www.cntesting.com.cn

地址: 安徽省合肥市庐阳区-工投兴庐科技产业园 3 栋 B 区 3 楼 网址: www.cntesting.com.cn TEL:0551-65165099

附图1 建设项目地理位置图

附图 2 厂区平面布置图

